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All graphs considered are finite, undirected and simple (without loops or multiple edges).

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of a

graph G is the length g = g(G) of a shortest cycle. The degree of a vertex v ∈ V is the

number of vertices adjacent to v. A graph is called k–regular if all its vertices have the same

degree k, and bi–regular or (k1, k2)–regular if all its vertices have either degree k1 or k2.

A (k, g)–graph is a k–regular graph of girth g and a (k, g)–cage is a (k, g)–graph with the

smallest possible number of vertices. The necessary condition obtained from the distance

partition with respect to a vertex yields a lower bound n0(k, g) on the number of vertices of

a (k, g)–graph, known as the Moore bound.

n0(k, g) =

{
1 + k + k(k − 1) + · · ·+ k(k − 1)(g−3)/2 if g is odd;

2(1 + (k − 1) + · · ·+ (k − 1)g/2−1) if g is even.

Biggs [8] calls excess of a (k, g)–graph G the difference |V (G)| − n0(k, g). Cages have been

intensely studied since they were introduced by Tutte [27] in 1947. Erdős and Sachs [13]

proved the existence of a (k, g)–graph for any value of k and g. Since then, most of the work

carried out has been focused on constructing smallest (k, g)–graphs (see e.g. [1, 2, 3, 4, 5,

6, 7, 10, 14, 16, 19, 24, 25, 26, 28]). Biggs is the author of an impressive report on distinct

methods for constructing cubic cages [9]. More details about constructions of cages can be

found in the surveys by Wong [28], by Holton and Sheehan [21, Chapter 6], or the recent

one by Exoo and Jajcay [15].

In this work we obtain (q+3)–regular graphs of girth 5 with fewer vertices than previously

known ones (cf. [17, 22]) for q = 13, 17, 19 and for any prime q ≥ 23 performing operations

of reductions on the Levi graph Bq of an elliptic semiplane of type C (see [12, 18]) and

then amalgams with bi–regular graphs into the obtained reduced graph or Bq itself. It is
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important to note that this graph Bq has also appeared in other different contexts (see e.g.

[11, 20, 23]). We also obtain a new 13–regular graph of girth 5 on 236 vertices from B11

using the same technique.
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[13] P. Erdös and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z.

Uni. Halle (Math. Nat.), 12 (1963) 251–257.

[14] G. Exoo, A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15 and 16, Electron. J.

Conbin. 3, 1996.

[15] G. Exoo and R. Jajcay, Dynamic Cage Survey, Electron. J. Combin. 15 (2008) #DS16.

[16] W. Feit and G. Higman, The non-existence of certain generalized polygons, J. Algebra 1 (1964) 114–

131.

[17] M. Funk, Girth 5 graphs from elliptic semiplanes, Note di Matematica, 29 suppl. 1 (2009) 91–114.

[18] M. Funk, D. Labbate, V. Napolitano, Tactical (de–)compositions of symmetric configurations, Discrete

Math., 309 (2009), 741-747.
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1 Introduction

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of a graph
G is the number g = g(G) of edges in a smallest cycle. For every v ∈ V , NG(v) denotes the
neighbourhood of v, that is, the set of all vertices adjacent to v. The degree of a vertex v ∈ V

is the cardinality of NG(v). A graph is called k-regular if all the vertices have the same degree.
A cage is a k-regular graph with girth g having the smallest possible number of vertices. Tutte
[1] proved that a lower bound n0(k, g) on the number of vertices n(k, g) in a cage is:

n0(k, g) =

{

1 + k + k(k − 1) + · · · + k(k − 1)(g−3)/2 if g is odd;

2(1 + (k − 1) + · · · + (k − 1)g/2−1) if g is even.
(1)

A (k, g)-cage with n0(k, g) vertices is called a minimal cage. The construction of graphs with
small excess n(k, g) − n0(k, g) is a difficult task. Thus most of work carried out has focused on
constructing a smallest one [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Biggs is the author of
a report on distinct methods for constructing cubic cages [17]. More details about constructions
of cages can be found in the survey by Wong [16] or in the survey by Holton and Sheehan [18]
or in the more recent dynamic cage survey by Exoo and Jajcay [19].

Minimal cages with even girth g exist only when g ∈ {4, 6, 8, 12}. If g = 4 they are the
complete bipartite graph Kk,k, and for g = 6, 8, 12 they are the incidence graph of a generalized
d-gon of order k. All these objets are known to exist for all prime power values of k − 1

∗Research supported by the Ministerio de Educación y Ciencia, Spain, the European Regional Development
Fund (ERDF) under project MTM2008-06620-C03-02; and under the Catalonian Government project 1298
SGR2009. CONACyT-México under project 57371 and PAPIIT-México under project 104609-3.
Email addresses: marien.abreu@unibas.it (M. Abreu), garaujo@matem.unam.mx (G. Araujo),
m.camino.balbuena@upc.edu (C. Balbuena), labbate@poliba.it (D. Labbate)
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[20, 21, 22], and no example is known when k − 1 is not a prime power. Thus, if q is a prime
power, a (q + 1)-regular graph with girth 8 and n0(q + 1, 8) vertices is the incidence graph of
a generalized quadrangle of order q. Following this geometrical idea Benson [7] constructed
minimal (q + 1, 8)-cages as follows. Let Q4 be a non-degenerate quadric surface in projective
4-space P (4, q). Define G8 to be the graph whose nodes are the points and lines of Q4, two
nodes being joined if and only if they correspond to an incident point-line pair in Q4. Then G8

is a minimal (q + 1)-regular graph of girth 8.

The first contribution of this work is a construction of these graphs in an alternative way by
means of an explicit formula given in the following theorem.

Theorem 1.1 Let Fq a finite field with q ≥ 2 a prime power. Let Γq = Γq[V0, V1] be a bipartite
graph with Vr = {(a, b, c)r , (q, q, a)r : a ∈ Fq ∪ {q}, b, c ∈ Fq}, r = 0, 1. And the edge set of Γq is
defined in the following way:

For all a ∈ Fq ∪ {q} and for all b, c ∈ Fq :

NΓq((a, b, c)1) =







{(j, aj + b, a2j + 2ab + c)0 : j ∈ Fq} ∪ {(q, a, c)0} if a ∈ Fq;

{(c, b, j)0 : j ∈ Fq} ∪ {(q, q, c)0} if a = q.

NΓq((q, q, a)1) = {(q, a, j)0 : j ∈ Fq} ∪ {(q, q, q)0}.

Then Γq is a (q + 1; 8)-cage on 2q3 + 2q2 + 2q + 2 vertices.

Remark 1.1 (i) Let Γq be a (q + 1; 8)-cage obtained in Theorem 1.1. Using geometrical
terminology we call the elements of V0 lines and the elements of V0 points. Then Γq is the
incidence graph of a classical generalized quadrangle Q(4, q).

(ii) The edge set of a (q + 1; 8)-cage Γq obtained in Theorem 1.1 can equivalently be expressed
as follows:

For all x ∈ Fq ∪ {q} and for all y, z ∈ Fq :

NΓq((x, y, z)0) =







{(a, y − ax, a2x − 2ay + z)1 : a ∈ Fq} ∪ {(q, y, x)1} if x ∈ Fq;

{(y, a, z)1 : a ∈ Fq} ∪ {(q, q, y)1} if x = q.

NΓq((q, q, z)0) = {(q, a, z)1 : a ∈ Fq} ∪ {(q, q, q)1};

NΓq((q, q, q)0) = {(q, q, x)1 : x ∈ Fq ∪ {q}}.

Therefore, if q is even, 2a = 0 for all a ∈ Fq so that the partite sets V0 and V1 can be inter-
changed obtaining the same graph Γq. Equivalently, if q is even (in geometrical terminology) the
corresponding generalized quadrangle Q(4, q) is said to be self-dual.

In what follows we construct (k, 8)-regular balanced bipartite graphs for k = q−1, q where q

is a prime powers q with order as small as possible. We will use the following notation. Given an
integer k ≥ 1, a graph G and a vertex u ∈ V (G), let Nk

G(u) = {x ∈ V (G) : dG(u, x) = k}, and
Nk

G[u] = {x ∈ V (G) : dG(u, x) ≤ k}, where dG(u, x) denotes the distance between u and x in G.
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A subset U ⊂ V (G) is said to be a fair dominating set of G if for each vertex x ∈ V (G) \ U ,
|NG(x)∩U | = 1. Let Γq = Γq[V0, V1] be the (q +1, 8)-cage constructed in Theorem 1.1. Suppose
that U is a fair dominating set of Γq, then Γq − U is a q-regular graph of girth 8. Thus it is
of interest to find the largest fair dominating set of Γq. In the following theorem we find fair
dominating sets of orders 2(q2 + 1), 2(q2 + 3q + 1) and 2(q2 + 4q + 3) if q is even.

Theorem 1.2 Let q ≥ 2 be a prime power and Γq = Γq[V0, V1] the (q + 1, 8)-cage constructed
in Theorem 1.1. The following sets are fair dominating in Γq:

(i) A = N2
Γq

[α] ∪ N2
Γq

[β] where α, β ∈ V (Γq) and β ∈ N3
Γq

(α). Further |A| = 2(q + 1)2.

(ii) B =
⋃

c∈Fq

NΓq
[(q, 0, c)1] ∪ NΓq

[(q, q, 0)1] ∪





⋂

c∈Fq

N2

Γq
[(q, 0, c)1] ∩ N2

Γq
[(q, q, 0)1]



 ∪ N2

Γq
[(q, q, ξ)1],

where ξ ∈ Fq \ {0}. Further |B| = 2(q2 + 3q + 1).

(iii)

C =
⋃

x∈Fq∪{q}

NΓq [(q, x, 0)0] ∪





⋂

x∈Fq∪{q}

N2
Γq

[(q, x, 0)0]



 ∪
⋃

x∈Fq

NΓq [(x, x, p(x))1]

∪NΓq [(q, 1, 1)1] ∪





⋂

x∈Fq

N2
Γq

[(x, x, p(x))1] ∩ N2
Γq

[(q, 1, 1)1]



 ,

where q ≥ 8 is even and p(x) = 1 + x + x2 for all x ∈ Fq. Further |C| = 2(q2 + 4q + 3).

The fair dominating sets described in item (ii) and (iii) of Theorem 1.2 are depicted in
Figure 1 and in Figure 2 respectively.

(000)0 · · ·
(00j)0 (100)0

· · · (10j)0

(q00)0

· · ·
(q0j)0

(q00)1 (q01)1 · · · · · ·
(qq0)1 (qqj)1

(ξ01)1

· · ·
(ξt1)1(ξ00)1

· · ·
(ξt0)1

(000)1

· · · · · ·
(00j)1

(qq0)0 (qq1)0 · · · · · · (qξ1)0(qqq)0 · · · · · · (qξ0)0

(qqq)1 (qqξ)1

Figure 1: Deleted subgraph in (ii) of Theorem 1.3.
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(000)1 · · ·
(0t0)1 (100)1

· · · (1t0)1

(q00)1

· · ·
(qt0)1

(q00)0 (q10)0 · · · · · ·
(qq0)0

(000)0

· · · · · ·
(0t0)0

(qq0)1 (qq1)1 · · · · · · (qqq)1

(qqq)0

(111)0 · · ·
(11j)0

(q01)0 · · ·
(j01)0 (1 + u−1, 1, 1)0· · ·

(q, u, 1 + u + u2)0

(q11)1 (001)1 · · · · · ·
(u, u, 1 + u + u2)1

(011)1

· · · · · ·
(u, 1 + u, 1 + u + u2)1

(qq1)0 (101)0 · · · · · · (1, 0, u + 1)0

(q01)1

Figure 2: Deleted subgraph in (iii) of Theorem 1.3.

When q = 2 a cycle of length 8 is obtained by eliminating from Γ2 the vertices indicated in
Theorem 1.2 (ii). And for q = 2 the (3, 8)-cage can be partitioned into two induced subgraphs
indicated in Figure 2. For q = 4 the (5, 8)-cage also contains a fair dominating set as indicated
in Theorem 1.2 (iii), which is as follows:

C =
⋃

x∈F4

NΓ4[(4, x, ξ)0] ∪ NΓ4 [(4, 4, 0)0 ] ∪





⋂

x∈F4∪{4}

N2
Γ4

[(4, x, ξ)0] ∩ NΓ4 [(4, 4, 0)0 ]





⋃

x∈F4
NΓ4[(x, x, p(x))1] ∪ NΓ4 [{(4, 1, 1)1}] ∪





⋂

x∈F4

N2
Γ4

[(x, x, p(x))1] ∩ N2
Γ4

[{(4, 1, 1)1}]



 ,

where ξ ∈ F4 \ {0, 1}, because in this case p(x) = 1 + x + x2 ∈ {0, 1} for all x ∈ F4.

For all q ≥ 2 the following result is immediate as a consequence of Theorem 1.2.

Theorem 1.3 Let q ≥ 2 be a prime power and Γq = Γq[V0, V1] the (q + 1, 8)-cage constructed
in Theorem 1.1. By removing from Γq a fair dominating set, q-regular graphs of girth 8 are
obtained with orders 2q(q2 − 1), 2q(q2 − 2) or 2(q3 − 3q − 2) if q ≥ 4 is even.

By using geometrical techniques, q-regular bipartite graphs of girth 8 on 2q(q2 − 2) vertices if
q is odd, or on 2(q3 − 3q − 2) vertices if q is even, are given in [23]. Also using geometrical
techniques (q− 1)-regular small graphs on 2(q3 − q2 − q + 1) vertices have been obtained in [24].
And (k, 8)-regular balanced bipartite graphs for all prime powers q such that 3 ≤ k ≤ q of order
2k(q2 − 1) have been obtained as subgraphs of the incidence graph of a generalized quadrangle
[3]. This result has been improved by constructing (k, 8)-regular balanced bipartite graphs of
order 2q(kq − 1) [6].

In the following theorem we improve this result for the case k = q − 1. Given a subset of
vertices S ∈ V (G) we denote by NG(S) = ∪s∈SNG(s).
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Theorem 1.4 Let q ≥ 4 be a prime power and Gq the q-regular graph of girth 8 constructed in
Theorem 1.3 on 2q(q2 − 2) vertices choosing ξ ∈ Fq \ {0, 1}. Define R = NGq({(q, y, z)0 : y, z ∈
Fq, y 6= 0, 1, ξ}) ∩ N5((q, 1, 0)0). The following set is fair dominating in Gq:

⋃

z∈Fq

NGq [(q, 1, z)0] ∪ NGq [R].

Therefore a (q − 1)-regular graph of girth 8 with 2q(q − 1)2 vertices can be obtained by deleting
from Gq the indicated fair dominating set.
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Let (d, k)-digraph be a diregular digraph of degree d ≥ 2, diameter k ≥ 2 and
order d+d2+ ...+dk, one less than the Moore bound. Such a (d, k)-digraph is also
called an almost Moore digraph. In this (d, k)-digraph, for every vertex u there
exists exactly one vertex v such that there are two walks of length ≤ k from u to
v. The vertex v is called the repeat of u, denoted by r(u) = v. In case r(u) = u,
vertex u is called a selfrepeat (the two walks, in this case, have lengths 0 and k).

The study of the existence of an almost Moore digraphs of degree d and diameter k
has received much attention. Fiol, Allegre and Yebra (1983) showed the existence
of (d, 2)-digraphs for all d ≥ 2. In particular, for d = 2 and k = 2, Miller and
Fris (1988) enumerated the exact number of (2, 2)-digraphs. Furthermore, Gim-
bert (2001) showed that there is only one (d, 2)-digraph, namely the line digraph
L(Kd+1) of the complete digraph Kd+1, for d ≥ 3. However for degree 2 and
diameter k ≥ 3, it is known that there is no (2, k)-digraph (Miller and Fris, 1992).
Furthermore, it was proved that there is no (3, k)-digraph with k ≥ 3 (Baskoro,
Miller, Siran and Sutton, 2005). Thus, the remaining case still open is the exis-
tence of (d, k)-digraphs with d ≥ 4 and k ≥ 3.

Several necessary conditions for the existence of (d, k)-digraphs, for d ≥ 4 and
k ≥ 3, have been obtained. In this talk, we shall discuss some necessary conditions
for these (d, k)-digraphs. Open problems related to this study are also presented.
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A 1−factor of a graphΓ is a spanning subgraph with all vertices of degree1. A
1−factorization of a graphΓ is a partition of its edges in disjoint1−factors. An auto-
morphism group of a1−factorization of a graphG is a group of permutations of the ver-
tices ofΓ that map factors to factors. If the automorphism group of a1−factorization is
sharply-transitive on its action on the vertices, the group is called regular. The problem
of existence of a1−factorization of a graphΓ with a regular automorphism group has
been considered for various types of graphs and groups. The benchmark of this topic
is due to Hartman and Rosa [4] :

Theorem 1 [4] A complete graphKn admits a1−factorization with a cyclic auto-
morphism group acting sharply transitively on the vertices if and only ifn is even and
n 6= 2

t, t ≥ 3.

This theorem has been generalized to the entire class of abelian groups [3] and
to the class of finitely generated abelian groups [2]. In [1], the autors extended the
problem to dihedral groups, leading to the following result.

Theorem 2 [1] A complete graphKn admits a1−factorization with a dihedral auto-
morphism group acting sharply transitively on the vertices for alln even.

The problem naturally extends to the class of complete multipartite graphsKm×n,
as introduced in [5]. It is proved in [5] that the existence of a1−factorization of
Km×n having an automorphism groupG acting sharply transitively on the vertices
is equivalent to the existence of a particular starter, a very slight generalization of the
concept of starter introduced by Buratti in [3] for the complete graph. We will present
our results ( joint work with G. Mazzuoccolo) and give new results for the existence of
1−factorizations ofKm×n admitting a regular, cyclic or abelian automorphism group.
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Directed Cages and the Caccetta–Häggkvist Conjecture
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Extended Abstract

1 Directed Cages

A cage is a smallest regular graph of specified degree and girth. If the degree is d and the

girth g, such a graph is called a (d, g)-cage. By considering a breadth-first search tree, the

number n of vertices in a (d, g)-cage is easily seen to satisfy the lower bound:

n ≥

{

(2(d − 1)k − 2)/(d − 2) if g = 2k,
(d(d − 1)k − 2)/(d − 2) if g = 2k + 1.

For g ≥ 5, equality is attained only rarely. For instance, when g = 5, only three such graphs

are known (of degrees d = 2, 3, 7); moreover, any further candidate must be of degree 57.

The methods used to study cages are primarily algebraic (see, for example, the survey by

Wong [?]).

The situation with regard to directed graphs is quite different. For simplicity, the digraphs
discussed here contain no cycles of length less than three (directed or otherwise). We shall call

a digraph d-regular of girth g if each vertex has indegree and outdegree d and if the shortest

directed cycle is of length g. A directed (d, g)-cage is thus a smallest d-regular digraph of

girth g.

As before, there is a simple bound for the number n of vertices in such a digraph. However

this time it is an upper bound, provided by the d-regular digraph
−→
Cn

d
, the d-th power of the

directed cycle
−→
Cn. If n = (g − 1)d + 1, then

−→
Cn

d
has girth g, yielding the bound

n ≤ (g − 1)d + 1.

Behzad, Chartrand and Wall [?] conjectured that equality holds. An equivalent formulation

of their conjecture is as follows.

Behzad–Chartrand–Wall Conjecture. Let D be a d-regular digraph on n vertices. Then
the girth of D is at most ⌈n/d⌉.

Powers of directed cycles are not the only hypothetical extremal digraphs for this conjecture.
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The lexicographic product of two ‘extremal’ digraphs of the same girth yields yet another

one. The Behzad–Chartrand–Wall Conjecture has been confirmed for small values of d by

various authors (see below), and for vertex-transitive digraphs, by Hamidoune [?]. A proof

for vertex-transitive digraphs can also be found in an expository article by Nathanson [?].

2 The Caccetta–Häggkvist Conjecture

Caccetta and Häggkvist [?] proposed a generalization of the Behzad–Chartrand–Wall Con-

jecture, requiring only a lower bound on the outdegrees of the digraph.

Caccetta–Häggkvist Conjecture. Let D be a digraph on n vertices in which each vertex
is of outdegree at least d. Then the girth of D is at most ⌈n/d⌉.

Remark. A digraph in which each vertex is of outdegree at least d contains a spanning

subgraph in which each vertex is of outdegree exactly d, so the qualification ‘at least’ in the

statement of the Caccetta-Häggkvist conjecture is superfluous.

This conjecture is more amenable to inductive arguments. It holds trivially for d = 1, and

has been verified for several other small values of d: by Caccetta and Häggkvist [?]) for

d = 2, by Hamidoune [?] for d = 3, and by Hoàng and Reed [?] for d = 4, 5. More generally,

Shen [?] has shown that it holds whenever n ≥ 2d2 − 3d + 1.

Chvátal and Szemerédi [?] established the bounds 2n/(d + 1) and n/d + 2500 on the

directed girth. Nishimura [?] reduced the additive constant in the latter bound to 304 and

Shen [?] reduced it further to 73. These results are asymptotically best possible for d = o(n).

However, they are far from tight when d = ⌈cn⌉ with c > 0. A particular effort has been

expended on the case c = 1/3. This instance of the Caccetta–Häggkvist Conjecture can be

rephrased as:

Directed Triangle Conjecture. Let D be a digraph on n vertices in which each vertex is
of outdegree ⌈n/3⌉. Then D contains a directed triangle.

It is perhaps surprising that this special case is still open. Short of proving the conjecture,

one may seek as small a value of c as possible such that every digraph on n vertices with

minimum outdegree at least cn contains a triangle. This was the strategy of Caccetta

and Häggkvist [?], who obtained the value c = (3 −
√

5)/2 ≈ 0.3820 by a simple inductive

argument. That bound was improved successively to 0.3798 by Bondy [?], 0.3542 by Shen [?],

0.3532 by Hamburger, Haxell and Kostochka [?], and 0.3465 by Hladký, Král, and Norine [?]

using the ‘flag algebras’ introduced by Razborov [?], [?]. Various equivalent formulations of

the Directed Triangle Conjecture are discussed by Charbit [?].

A conjecture intermediate between the Behzad–Chartrand–Wall and Caccetta–Häggkvist

conjectures was considered by de Graaf, Schrijver, and Seymour [?]. They proved that any

digraph on n vertices with both minimum indegree and minimum outdegree at least cn,

where c ≈ 0.3488, contains a triangle, thereby strengthening and extending a bound for

regular digraphs found by Li and Brualdi [?]. This bound has also seen several successive

improvements, by de Graaf [?] to 0.3461, by Hamburger, Haxell, and Kostochka [?] to 0.3457,
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and most recently to 0.3436 by Lichiardopol [?], using the result of Hladký, Král, and Norine

cited above.

3 Related Questions

One sign of a good problem is that it gives rise to further good problems. We mention two

here.

Seymour [?] proposed the following beautiful conjecture, which would imply the triangle

case of the Behzad–Chartrand–Wall Conjecture. A second outneighbour of a vertex v in a

digraph is a vertex whose distance from v is exactly two.

Second Neighbourhood Conjecture. Every digraph has a vertex v with at least as many
second outneighbours as outneighbours.

The Second Neighbourhood Conjecture was verified for tournaments by Fisher [?], and later

by Havet and Thomassé [?], using quite different methods. This special case of the conjec-

ture is due to Dean and Latka [?].

The Caccetta–Häggkvist Conjecture relates three parameters, the order, the directed girth

and the minimum outdegree. A strengthening which brings into play the structure of the

digraph was formulated by Hoàng and Reed [?].

Hoàng–Reed Conjecture. Let D be a digraph in which each vertex is of outdegree d. Then
D contains d directed cycles C1, . . . , Cd such that Cj meets ∪j−1

i=1Ci in at most one vertex,
1 < j ≤ d.

In other words, D contains a ‘forest’ of d arc-disjoint directed cycles, any two meeting in at

most one vertex. In this case, a simple calculation shows that one of the d directed cycles

has length at most ⌈n/d⌉.

The Hoàng–Reed Conjecture holds for d = 2 by a result of Thomassen [?], and was verified

for d = 3 by Welhan [?]. Havet, Thomassé and Yeo [?] showed that it is true also for tour-

naments.

One may formulate variants and refinements of the Hoàng–Reed Conjecture by considering

special forests of directed cycles, such as stars and paths. For instance, Seymour [?] asked

whether any d-regular digraph has a vertex v and d arc-disjoint directed cycles meeting only

at v. This is true for d = 3 by a theorem of Thomassen [?]. However, Mader [?] showed that

it is false for all d ≥ 8. On the other hand, Mader [?] proved that there is always such a star

of directed cycles in a vertex-transitive digraph. Hamidoune [?] gave a simpler proof of this

fact. Mader [?] also found examples, for all d ≥ 4, of d-regular vertex-transitive digraphs

containing no path of d arc-disjoint directed cycles.

For an extensive survey on the topic, with a multitude of related open problems, see Sulli-

van [?].
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Generating regular directed graphs
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Abstract

In this talk we describe an algorithm to efficiently generate all regular
directed graphs for a given number of vertices and given degree. So far the
fastest way to construct regular directed graphs was by assigning directions
to the underlying undirected graphs. Efficient programs for this task are e.g.
directg [2] or water [1]. In this talk, the directed graphs are constructed from
bipartite (undirected) graphs by forming pairs of vertices with one vertex in
every class.

The bijective correspondence between (a) directed graphs with in- and
out-degree k and n vertices and (b) k-regular bipartite 2-coloured (say black
and white) graphs with 2n vertices and a fixed perfect matching of the com-
plement is simple:

For a k-regular directed graph D the corresponding bipartite graph is
formed by replacing every vertex v by two vertices – a black vertex vb and
a white vertex vW . Then for every directed edge a → b an undirected edge
{ab, bw} is inserted. The matching of the complement is the set of all {vb, vw}
with v a vertex of the directed graph.

The reverse operation is to direct all edges from the black to the white
bipartition and identify vertices as described by the given matching. This
operation guarantees that no loops or double edges will be present in the
directed graphs, but without further restrictions to the matching, oppositely
directed edges with the same pair of endpoints may occur – and unless ex-
plicitly stated otherwise that is also the intention.

Bipartite regular graphs can be efficiently generated by Markus Meringer’s
program genreg [3], so what remains to be done is to develop methods to gen-
erate all non-equivalent matchings of the complement of a regular bipartite
graph – that is: matchings that lead to non-isomorphic directed graphs. This
will be the main topic of this talk. The basic method applied is McKay’s
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canonical construction path methode described in [2] – but with some new –
and hopefully in an more general context applicable – additional optimisa-
tions.
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Extended abstract

From Groups to graphs in the footsteps of 
Jacques Tits
1. The Abel Prize 2008 was awarded to Jacques Tits 
and John Thompson. The motivation concerning Tits 
was mainly based on his Theory of Buildings. This 
theory ought to be a chapter in Graph Theory. Let us 
restrict to spherical buildings which include all finite 
buildings.
Such a building is a graph submitted to conditions, no 
more, no less.
Also, most such buildings have a large automorphism 
group whose action is transitive on ordered maximal 
cliques. Knowing the abstract group allows for a 
uniform construction of all buildings ( of rank >2).

2.Jacques Tits, buildings and graphs
Born: Uccle (Brussels) 1930
Belgian then French in 1974
Winner of Abel Prize in 2008 for his fundamental 
Theory of BUILDINGS spread over 1954-2004 with 
birth of Buildings in 1961 and Theory of Spherical 
Buildings completed in 1974.
Buildings are graphs !!! 
3.Buildings as graphs
3.1. Restrict to spherical buildings namely those all of 
whose apartments are finite. 
We start defining a spherical building SB.
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3.2. SB is a graph ( undirected, no loops)
AXIOM: SB is multipartite of some rank r > 0.
AXIOM: Every maximal clique has r vertices
3.3. DEF: SB is THICK if every comaximal clique is in at 
least three maximal ones.
DEF: SB is THIN if every comaximal clique is in exactly 
two maximal ones.
3.4. NOTATION: For any set V of vertices, V* is the 
set of vertices not in V that are adjacent to all in V.
AXIOM: For every clique c of rank in [0, r -2], c* is 
CONNECTED.

4.Apartments
4.5. SB is equipped with a family A of subgraphs of 
rank r called apartments
AXIOM: every apartment is thin
4.6. AXIOM: In SB, any two cliques are contained in 
some apartment ( BNB property)
4.7. AXIOM: In SB, for any two apartments U and V 
and cliques C,D in their intersection there exists a 
(type preserving) isomorphism of U onto V fixing C and 
D vertexwise ("germ" of group)
4.8 A fantastic Theory is developed on this basis
Examples that were analyzed for years because of the 
complexity they entail, come from the Theory of Lie-
Chevalley groups, without any case analysis.
A major result : every thick spherical building of rank 
r>2 is one of the Lie-Chevalley examples.

5. From groups other than Lie-Chevalley to graphs
-Mostly one of the 26 sporadic simple groups.
Has been a project of mine since 1975.
Great advances made by various persons in particular 
Dimitri Leemans.
-Still other groups met in the study of sporadic groups.
-First of all, we look at the Golay code with no 
attention for Coding Theory.
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6.Coset graph of the extended binary Golay code
Group 212 : M24
distance-transitive
Vertex stabilizer M24
Graph on 4096 vertices,bipartite (2048+2048), degree 
24, girth 4,diameter 4.

7. Janko group J4
86 775 571 046 077 562 880  approx 8:1019
221 35 5 7 11 23 29 31 37 43
Predicted by Z.Janko 1975
Existence with help of a computer: S.Norton, C.Parker, 
J.Thackray, D.J.Benson, J.H.Conway 1980
J4 < GL112(F2)
Computer free: A.A. Ivanov and U. Meierfrankenfeld 
1999
Picture of SMALLEST GRAPH on which J4 acts 
transitively.
It has 173 067 389 vertices and degree 15180
The graph is due to Peter Rowley and Louise Walker 
1994
The stabilizer of a vertex is 212 : M24

-A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-
Regular Graphs, Springer, 1989
-F.Buekenhout (editor), Handbook of Incidence 
Geometry, Elsevier,1995.
-R.Weiss, The structure of Spherical Buildings, 
Princeton U.P. 2003
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The problem of finding the number of spanning trees of a finite graph is
a relevant and long time studied question as it has been considered in differ-
ent areas of mathematics, physics, chemistry and computer science, since its
introduction by Kirchhoff in 1847 [7]. This graph invariant is a parameter
that characterizes the reliability of a network [3, 11] and can be related to
its optimal synchronization [14] and the study of random walks [8]. It is
also of interest in theoretical chemistry, see for example [1]. The number of
spanning trees of a graph can be computed, as shown in many basic texts
on graph theory, from the Kirchhoff’s matrix-tree theorem and it is given
by the product of all nonzero eigenvalues of the Laplacian matrix of the
graph [4]. Although this result can be applied to any graph, the calculation
of the number of spanning trees from the matrix theorem is analytically and
computationally demanding, in particular for large networks. Not surpris-
ingly, some recent work have been devoted to find alternative methods to
produce closed-form expressions for the number of spanning trees for par-
ticular graphs such as grid graphs [9], lattices [13], the Sierpinski gasket [2],
and so forth.

In this talk, we find an exact analytical expression for the number of
spanning trees of the n-disc Hanoi graph. This graph comes from the well
known tower of Hanoi puzzle since the graph is associated to the allowed
moves in this problem [5]. There exists an abundant literature on the prop-
erties of the Hanoi graph, which includes the study of shortest paths, average
distance, planarity, Hamiltonian walks, group of symmetries, to name a few
problems, see for example [6, 12, 10] and references therein. Thus, our study
is relevant given the importance of the graph, and because of the method
used to compute the number of spanning trees which is based on the self-
similarity of the Hanoi graph. Our result allows also the calculation of the
spanning tree entropy of Hanoi graphs and we compare its asymptotic value
with those of other graphs with the same average degree, like the honeycomb
lattice [15], the 4-8-8 (bathroom tile) and 3-12-12 lattices [13]. The value
for the Hanoi graph is the lowest reported for graphs with average degree
3. This reflects the fact that the number of spanning trees in Hanoi graphs,
although growing exponentially, do it at a lower rate than lattices with the
same average degree.
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[7] G. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei der
untersuchung der linearen vertheilung galvanischer ströme geführt wird, Ann.
Phys. Chem. 72 (1847) 497.

[8] P. Marchal, Loop-erased random walks, spanning trees and hamiltonian cycles,
Elect. Comm. in Probab. 5 (2000) 39-50.

[9] S. D. Nikolopoulos, C. Papadopoulos, The number of spanning trees in Kn-
complements of quasi-threshold graphs, Graphs Combin. 20 ( 2004) 383–394.

[10] S.E. Park, The group of symmetries of the Tower of Hanoi graph, Amer. Math.
Monthly 117 (2010) 353-360.

[11] L. Petingi, F. Boesch, C. Suffel, On the characterization of graphs with max-
imum number of spanning trees. Discrete Math. 179 (1998) 155–166.

[12] D. Romik, Shortest paths in the tower of Hanoi graph and finite automata,
SIAM J. Discrete Math. 20 (2006) 610–622.

[13] R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in d dimensions,
J. Phys. A: Math. Gen. 33 (2000) 3881.

[14] N. Takashi, A. E. Motter, Synchronization is optimal in nondiagonalizable
networks. Phys. Rev. E, 73 (2006) 065106(R).

[15] F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A: Math. Gen. 10
(1977) 113-115.

2



Perturbations in Almost Distance-Regular Graphs

C. Dalfó†, E.R. van Dam‡ and M.A. Fiol†
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1 Introduction

The aim of this paper is to put together some ideas and results from different theories to
show that certain almost distance-regular graphs, the so-called h-punctually walk-regular
(or h-punctually spectrum-regular) graphs, can be characterized through the cospectral-
ity of their perturbed graphs. We consider three one-vertex perturbations, namely, vertex
deletion, adding a loop at a vertex, and adding a pendant edge at a vertex. These three
perturbations are extended to pairs of vertices to obtain two-vertex ‘separate’ perturba-
tions. We also consider three two-vertex ‘joint’ perturbations, namely adding/removing
an edge, amalgamating two vertices, and adding a bridging vertex. We show that for
walk-regular graphs all these two-vertex operations are equivalent, in the sense that one
perturbation produces cospectral graphs if and only if the others do. We also consider
perturbations on a set of vertices, and their impact on almost distance-regular graphs. As
a consequence, we obtain some new characterizations of distance-regular graphs, in terms
of the cospectrality of their perturbed graphs.

2 Preliminaries

2.1 Graphs and their spectra

Let G = (V,E) be a (connected) graph with vertex set V and edge set E. The adjacency
between vertices u, v ∈ V , that is uv ∈ E, is denoted by u ∼ v, and their distance is

∂(u, v). Let A = (auv) be the adjacency matrix of G, with characteristic polynomial
φG(x), and spectrum spG = {λm0

0 , λm1
1 , . . . , λmd

d }, where the different eigenvalues of G are
in decreasing order, λ0 > λ1 > · · · > λd, and the superscripts stand for their multiplicities
mi = m(λi). For i = 0, 1, . . . , d, letEi be the principal idempotent ofA, which corresponds
to the orthogonal projection onto the eigenspace Ei = Ker(λiI −A). In particular, if G is
regular, E0 =

1
nJ , where J stands for the all-1 matrix. As is well known, the idempotents

satisfy the following properties: EiEj = δijEi (with δij being the Kronecker delta),

AEi = λiEi, and q(A) =
∑d

i=0 q(λi)Ei for every rational function q that is well-defined

1
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at each eigenvalue of A; see, for instance, Godsil [6]. The uv-entry muv(λi) = (Ei)uv of
the idempotent Ei is called the crossed (uv-)local multiplicity of λi. See, for example, [2])
for more details.

Note that the uv-entry a
(`)
uv of the power matrix A` is equal to the number of walks of

length ` between vertices u, v. Rowlinson [11] showed that a graph G is distance-regular if
and only if this number of walks only depends on ` = 0, 1, . . . , d and the distance ∂(u, v)
between u and v. Similarly, G is distance-regular if and only if its local crossed multiplici-
ties muv(λi) only depend on λi and ∂(u, v); see [3]. Inspired by these characterizations, the
authors [1] introduced the following concepts as different approaches to ‘almost distance-
regularity’. We say that a graph G with diameter D and d + 1 distinct eigenvalues is
h-punctually walk-regular, for a given h ≤ D, if for every ` ≥ 0 the number of walks of
length ` between a pair of vertices u, v at distance ∂(u, v) = h does not depend on u, v.
Similarly, we say that G is h-punctually spectrum-regular, for a given h ≤ D if for all
i ≤ d, the crossed uv-local multiplicities of λi are the same for all pairs of vertices u, v at
distance ∂(u, v) = h. In this case, we write muv(λi) = mhi. The concepts of h-punctual
walk-regularity and h-punctual spectrum-regularity are equivalent. For h = 0, the con-
cepts are equivalent to walk-regularity (a concept introduced by Godsil and McKay in [7])
and spectrum-regularity (see [4]), respectively.

2.2 Graph perturbations

As mentioned above, we consider three basic graph perturbations which involve a given
vertex u ∈ V :
P1. G− u is the graph obtained from G by removing u and all the edges incident to it.
P2. G + uu is the (pseudo)graph obtained from G by adding a loop at u. (In this case
the graph obtained has adjacency matrix as expected, with its uu-entry equal to 1.)
P3. G+ uū is the graph obtained from G by adding a pendant edge at u (thus creating
a new vertex ū).

Two vertices u, v satisfying sp(G−u) = sp(G−v) were called cospectral by Herndon and
Ellzey [8]. We say that a graph is 0-punctually cospectral when all its vertices are cospectral;
a concept that we generalize below. It is well-known that a graph is 0-punctually cospectral
if and only if it is walk-regular; see Proposition 3.1, where we also relate this to the
perturbations P2 and P3. In fact, Proposition 3.1 implies that cospectral vertices u, v
can be equivalently defined by requiring that sp(G + uu) = sp(G + vv) or sp(G + uū) =
sp(G+ vv̄).

Given a vertex subset U ⊂ V , we can also consider the graphs obtained by applying
any of the above perturbations to every vertex of U , with natural notation G−U , G+UU
and G+ UŪ . In particular, when U = {u, v}, we also write G− u− v, G+ uu+ vv and
G+ uū+ vv̄.

Building on the concept of cospectral vertices, Schwenk [12] considered the analogue
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for sets: Two vertex subsets U,U ′ ⊂ V are removal-cospectral if there exists a one-to-
one mapping U → U ′ such that, for every W ⊂ U , the graphs G − W and G − W ′ are
cospectral. A main result of his paper was the following necessary condition for two sets
being removal-cospectral:

Theorem 2.1 [12] If U,U ′ are removal-cospectral sets, then a
(`)
uv = a

(`)
u′v′ for all pairs of

vertices u, v ∈ U and all ` ≥ 0.

Godsil [5] proved that two vertex subsets U,U ′ are removal-cospectral if and only if for
every subset W ⊂ U with at most two vertices, the subsets W,W ′ are removal-cospectral
(for both an alternative proof and a geometric interpretation of this result, see Rowlinson
[10]).

As a consequence of Theorem 2.1, notice that for {u, v} and {u′, v′} to be removal-
cospectral we need that ∂(u, v) = ∂(u′, v′). Otherwise, if r = ∂(u, v) < ∂(u′, v′), say, we
would have a

(r)
uv > 0 whereas a

(r)
u′v′ = 0. Inspired by this property, we say that two vertex

subsets are isometric when there exists a one-to-one mapping U → U ′ such that, for every
pair u, v ∈ U , we have ∂(u, v) = ∂(u′, v′). So, if two sets are removal-cospectral then
they are also isometric. In the last section, we show that the converse is also true for
distance-regular graphs.

For example, in the Petersen graph all cocliques (that is, independent sets) of size 3
are removal-cospectral (see Fig. 1). By adding edges to the cocliques also gives cospectral
but non-isomorphic graphs since, as was proved by Schwenk [12], if U and U ′ are removal-
cospectral sets, then any graph may be attached to all the points of U and to the points
of U ′ with the two graphs so formed being cospectral.
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Figure 1: Petersen graph with 3-cocliques

In our framework of almost distance-regular graphs, the case when the two vertices of
W are at a given distance proves to be specially relevant, and leads us to the following
definition: A graph G with diameter D is h-punctually cospectral, for a given h ≤ D,
when, for all pairs of vertices u, v and w, z, both at distance ∂(u, v) = ∂(w, z) = h, we
have sp(G−u−v) = sp(G−w−z). Again, we show later (in Lemma 4.1) that this concept
can also be defined by using the other graph perturbations considered here. Notice that,
since there are no restrictions on either pair of vertices, except for their distance, this is
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equivalent to the sets W = {u, v} and W ′ = {u′, v′}, with both mappings u′ = w, v′ = z
and u′ = z, v′ = w, being removal-cospectral.

Then, using our terminology, Schwenk’s theorem implies the following corollary:

Corollary 2.2 If a graph G is j-punctually cospectral for j = 0, h, then it is j-punctually
walk-regular for j = 0, h.

Answering a question of Schwenk [12], Rowlinson [10] proved the following characterization
of removal-cospectral sets, which we give in terms of the local crossed multiplicities:

Theorem 2.3 [10] The vertex (non-empty) subsets U,U ′ are removal-cospectral if and
only if muv(λi) = mu′v′(λi) for all u, v ∈ U and i = 0, 1, . . . , d.

In our context we have the following consequence:

Corollary 2.4 A graph G is j-punctually cospectral for j = 0, h if and only if it is j-
punctually spectrum-regular for j = 0, h.

We remind the reader that the concepts of h-punctually walk-regularity and h-punctually
spectrum-regularity are equivalent, so Corollary 2.4 implies Corollary 2.2.

3 Walk-regular graphs

Our main results were inspired by the following characterizations of walk-regular graphs:

Proposition 3.1 For all vertices u, v, we have the following equivalences:
G is walk-regular ⇔ G is spectrum-regular ⇔ sp(G− u) = sp(G− v)
⇔ sp(G+ uu) = sp(G+ vv) ⇔ sp(G+ uū) = sp(G+ vv̄).

Thus, a graph G is (0-punctually) walk-regular or (0-punctually) spectrum-regular if
and only it is 0-punctually cospectral, a concept which, as was claimed, can be defined
through any of the considered graph perturbations. In the next section, we generalize this
result.

4 h-Punctually walk-regular graphs

4.1 Separate perturbations

Let us first prove the following lemma concerning perturbationsP1-P3 for pairs of vertices
in walk-regular graphs:

4



Lemma 4.1 For all pairs of vertices u, v and w, z of a walk-regular graph G, we have the
following equivalences:
sp(G− u− v) = sp(G− w − z) ⇔ sp(G+ uu+ vv) = sp(G+ ww + zz)
⇔ sp(G+ uū+ vv̄) = sp(G+ ww̄ + zz̄).

Notice that, by this result and Proposition 3.1, each of the above conditions (a)-(c) is
equivalent to the sets {u, v} and {w, z} being removal-cospectral. Moreover, as mentioned
before, this allows us to define h-punctually cospectrality by requiring that every pair of
vertices at distance h satisfies one of these conditions.

In turn, this leads to the following characterization of h-punctually walk-regular graphs.
It is, in a sense, a restatement of Corollary 2.4.

Theorem 4.2 For a walk-regular graph G with diameter D and a given integer h ≤ D,
we have the following equivalences:
G is h-punctually walk-regular ⇔ G is h-punctually spectrum-regular
⇔ G is h-punctually cospectral.

4.2 Joint perturbations

We now consider the following perturbations involving two given vertices u, v:
P4. G±uv is the graph obtained from G by flipping the (non-)edge uv. (That is, changing
the edge uv into a non-edge or vice versa.)
P5. Gu+v is the (pseudo)graph obtained from G by amalgamating the vertices u and v (if
u ∼ v then the edge uv becomes a loop; if u and v have common neighbors, then multiple
edges arise; the ‘new’ vertex is denoted by u+ v).
P6. G+uūv is the graph obtained from G by adding the 2-path uūv (thus creating a new
so-called bridging vertex ū).

In the case that the graphs G+ uūv and G+ww̄z are cospectral, the pairs (u, v) and
(w, z) are called isospectral; see Lowe and Soto [9]. The following result states that for
walk-regular graphs, isospectral pairs can also be defined by requiring cospectrality of the
graphs obtained from perturbations P4-P5.

Proposition 4.3 Let u, v and w, z be pairs of vertices of a walk-regular graph G such that
u ∼ v if and only if w ∼ z. Then, we have the following equivalences:
sp(G± uv) = sp(G± wz) ⇔ spGu+v = spGw+z ⇔ sp(G+ uūv) = sp(G+ ww̄z).

We remind the reader that the condition muv(λi) = mwz(λi) for all i = 0, 1, . . . , d
implies that u and v are at the same distance as w and z. Inspired by this and the
above result, we say that a graph G with diameter D is h-punctually isospectral, for a
given h ≤ D, when every pair of vertices at distance h satisfies one of the conditions in
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Proposition 4.3. As a corollary of its proof, we then obtain the following characterization
of h-punctually walk-regular (or h-punctually spectrum-regular) graphs.

Corollary 4.4 For a walk-regular graph G with diameter D and a given integer h ≤ D,
we have the following equivalences:
G is h-punctually walk-regular ⇔ G is h-punctually spectrum-regular
⇔ G is h-punctually isospectral.

4.3 Multiple perturbations

For the sake of simplicity, we have only considered perturbations in a single graph G so
far. However, we also could use the above perturbations in cospectral graphs G and G′ to
get new cospectral graphs (as is well known from the literature). The conditions for this
to work are similar as before: the crossed local multiplicities muv(λi) (in G) and m′

wz(λi)
(in G′) should be the same for all i = 0, 1, . . . , d (or alternatively: the number of walks

a
(`)
uv (in G) and a

′(`)
wz (in G′) should be the same for all `).

For the next step — multiple perturbations — it is hard to avoid working with different
(but cospectral) graphs. We next consider removal-cospectral sets U,U ′ belonging to
cospectral (but not necessarily isomorphic) graphs G,G′ (i.e., there exists a one-to-one
mapping U → U ′ such that, for every W ⊂ U , the graphs G − W and G′ − W ′ are
cospectral), as is usually done in the literature. The following proposition shows that all
perturbations P1-P6 leave the property of two sets being removal-cospectral invariant,
and gives new insight into some of the previous implications.

Proposition 4.5 Let U and U ′ be removal-cospectral sets in cospectral graphs G and G′,
and let u, v ∈ U with corresponding vertices u′, v′ ∈ U ′. Let Ũ , Ũ ′ be the sets obtained from
U,U ′ after perturbing vertices u and u′ according to one of the perturbations P1-P3, or
perturbing pairs of vertices u, v and u′, v′ through one of the perturbations P4-P6, where
possible new vertices u + v, ū, ū′ are included in Ũ , Ũ ′. Let G̃ and G̃′ be the resulting
perturbed graphs. Then, the sets Ũ , Ũ ′ are removal-cospectral in G̃ and G̃′.

As a consequence, notice that the different one-vertex and two-vertex perturbations can
be repeated over and over again to obtain different cospectral graphs G̃ and G̃′. In other
words, from two removal-cospectral sets U,U ′, one can, for example, amalgamate several
vertices, or combine amalgamation with other operations such an edge removal/addition
(hence also contract an edge), adding pendant edges, etc., to obtain new removal-cospectral
sets Ũ , Ũ ′ in the corresponding cospectral graphs G̃, G̃′. This suggests the following defi-
nition: Two vertex subsets U,U ′ of cospectral graphs G,G′ are called perturb-cospectral if
for all subsets S ⊂ U and S′ ⊂ U ′, the perturbed graphs G̃ and G̃′, obtained by applying
P1-P6 to corresponding vertices of U and U ′, are cospectral.
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5 Distance-regular graphs

In this section we use the above results to obtain some new characterizations of distance-
regular graphs.

In [1], the authors considered also the following concepts: A graph G is m-walk-
regular (respectivelym-spectrum-regular) when it is i-punctually walk-regular (respectively
i-punctually spectrum-regular) for every i ≤ m. Similarly, we say that G is m-cospectral
(respectively, m-isospectral) when it is i-punctually cospectral (respectively, i-punctually
isospectral) for every i ≤ m. Using these definitions, Theorem 4.2 and Corollary 4.4 have
the following direct consequence:

Corollary 5.1 For a walk-regular graph G with diameter D and a given integer m ≤ D,
we have the following equivalences:
G is m-walk-regular ⇔ G is m-spectrum-regular ⇔ G is m-cospectral ⇔ G is m-isospectral.

Moreover, as mentioned in Section 2.1, Rowlinson [11] proved that a graph G is distance-
regular if and only if it is D-walk-regular. Hence, we get the following characterization:

Theorem 5.2 Let G be a graph with diameter D. Then, we have the following equiva-
lences:
G is distance-regular ⇔ G is D-cospectral ⇔ G is D-isospectral.

In fact, notice that we also proved the following result:

Theorem 5.3 A graph G = (V,E) is distance-regular if and only if every two isometric
subsets U,U ′ ⊂ V are perturb-cospectral.
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Charles Delorme

Symmetric graphs and GL(2, R)

I intend to describe some constructions of symmetric graphs, some are

large and some are large among graphs subect to other conditions, like per-

sistance of the diameter after romoval of a vertex or an edge.

The tools will be of course Cayley graphs and quotients of Cayley graphs

by subgroups.

The groups GL(2, R) of 2 × 2 matrices on a ring R are mainly used,

because of the geometrical interpretation of some constructions.

Some famous graphs and families of graphs can be obtained in this way. Is

it necessary to indicate that Petersen graph, Tutte-Coxeter graph, Heawood

graph, Biggs-Smith graph (102 vertices) invite themselves in the list?

Indeed the group (or rather its quotient PGL(2, R)) operates on the pro-

jective line on R by homographies.

The group with the ring R may be used to modelize rotations, and in

particular rotations of platonic polyhedra, suggesting similar objects for finite

fields

Ramanujan graphs (not always symmetric) can be built within a similar

frame.

Some references:

• Ramanujam graph and the reason why they tend to have a large girth

(and therefor a moderate diameter) is explained in

Lubotzky, Phillips Sarnak. Ramanujan graphs Combinatorica 8 p. 261-

277 (1988)

• The construction of graphs with involutive homographies on the pro-

jective line was inspired by

Biggs, Hoare. The sextet construction for cubic graphs. Combinatorica

3 p.153-165 (1983)

• Characterising vertex-transitive graphs is a result in

Sabidussi. Vertex-transitive graphs. Monatshefte für Mathematik 68

p.821-888 (1964)
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A Survey of Generalized Connectivity and its Applications in Security  
 

Yvo DESMEDT 

 

ABSTRACT  

 

 

In the first part of the talk, we survey the use of AND/OR graphs to model  

critical infrastructures. It was shown that the equivalent problem of  

connectivity for AND/OR graphs is Co-NP-complete. When adding to each 

edge a capacity, other critical aspects of infrastructures can be modeled, as 

briefly explained.  

In the second part of the talk we focus on graphs and directed graphs. In a  

k-connected graph, the destruction of k-1 nodes will continue to guarantee a  

path between any two nodes in the graph. In practice the idea that faults can  

be modeled using a threshold is misleading. An attack today can be replicated  

using computer viruses, worms and hybrids. So, instead of being able to  

disrupt k nodes, the adversary might be able to choose k platforms and shut  

down all nodes running one of these k platforms. Labeling the vertices allows  

to model this. Indeed, the label indicates the operating system a computer or  

router (i.e., a node) uses. Guaranteeing that the remaining graph is still  

connected is Co-NP-complete. A similar problem consists of labeling the  

edges. We link this problem to work by Euler and explain the relevance  

to designing computer networks in earthquake zones.  

In the third part of the talk we explain the role connectivity plays in  

cryptography. The issue at stake is how a sender and a receiver can privately  

and reliable communicate even though they have not exchanged a key  

and they do not trust RSA (etc.) 

 Although connectivity is an old problem, above generalizations have only 

been  

studied during the last 15 years. Several research groups on cryptography in  

the world have contributed to this line of work. 
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1 Introduction

Since its introduction by Biggs in the 70’s (see [1]), the theory of distance-regular graphs
has been widely developed in the last decades. Its importance is highlighted in the preface’s
comment of the comprehensive textbook of Brower, Cohen and Neumaier [2]: “Most finite
objects bearing ‘enough regularity’ are closely related to certain distance-regular graphs.”

When we look at the distance partition of the graph from each of its edges instead of
its vertices, we arrive, in a natural way, to the concept of edge-distance-regularity [6].
More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is
distance-regular around each of its edges and with the same intersection numbers for any
edge taken as a root. In this work we study this concept, give some of its properties, such
as the regularity of Γ, and derive some characterizations. In particular, it is shown that
a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of
degree k in A multiplied by the (standard) incidence matrix. Also, the analogue of the
spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral
characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite
graph which is both distance-regular and edge-distance-regular is a generalized odd graph.

Let Γ be a connected graph with adjacency matrix A. Its spectrum is denoted by sp Γ =

{λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d }, where the eigenvalues are listed in decreasing order and m(λl)

is the multiplicity of λl as an eigenvalue of A. Let ev Γ be the set of different eigenvalues
of Γ. The principal idempotents of A are denoted by El, l = 0, 1, . . . , d. The Perron-
Frobenius Theorem ensures that m(λ0) = 1 and guaranties the existence of a positive

∗Research supported by the Ministerio de Educación y Ciencia, Spain, and the European Regional
Development Fund under project MTM2008-06620-C03-01 and by the Catalan Research Council under
project 2009SGR1387.
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2

eigenvector ν ∈ ker(A− λ0I) with minimum component equal to one. Given a nonempty
set C of vertices of Γ, we consider the map ρ : P(V ) → Rn defined by ρ∅ = ~0 and
ρC =

∑
i∈C νiei for C 6= ∅ and denote by eC the normalized of the vector ρC. If eC =

zC(λ0) +zC(λ1) + · · ·+zC(λd) is the spectral decomposition of eC , that is zC(λl) = EleC ,
the C-multiplicity of the eigenvalue λl is defined by mC(λl) = ‖zC(λl)‖2. We denote by
evC Γ = {µ0, µ1, . . . , µdC} the set of different eigenvalues with non-zero C-multiplicity and

write spC Γ = {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC )

dC
} for the C-spectrum of Γ. As an analogous

to the relation between the diameter of a graph and its number of different eigenvalues,
the eccentricity of C is bounded by εC ≤ dC , and when equality is attained we say that
C is an extremal set. If C is a single vertex u, the u-local multiplicities coincide with
the diagonal entries of the idempotents, mi(λl) = (El)uu. By analogy, for every pair of
vertices u, v ∈ V , the uv-crossed multiplicity of λ is muv(λl) = (El)uv.

Let M = {λ0 > λ1 > . . . > λd} be a mesh of real numbers and g : M → R a weight
function defined on it. In R[x]/I, where I is the ideal generated by the polynomial
Z(x) =

∏d
l=0(x− λl), we define the inner product associated to (M, g) by

〈p, q〉 =

d∑
l=0

g(λl)p(µl)q(µl).

The canonical orthogonal system associated to (M, g) is the unique family of polynomials
{pk}0≤k≤d with deg pk = k and ‖pk‖2 = pk(λ0). See [3] for a comprehensive study of
this family. The C-local predistance polynomials {pCk }0≤k≤dC are the canonical orthogonal
system associated to the mesh evC Γ, with weight function mC : evC Γ → R given by
the C-multiplicities. Similarly, the predistance polynomials {pk}0≤k≤d are the canonical
orthogonal system associated to ev Γ and weight function given by g(λl) = m(λl)/n.

2 Pseudo-regular partitions and edge-distance-regularity

Given a set C of vertices of a simple connected graph Γ = (V,E) with eccentricity εC ,
consider the partition of V given by the distance to C: V = C0 ∪ C1 ∪ · · · ∪ CεC , where
Ck = {i ∈ V | ∂(i, C) = k}. We say that Γ is C-local pseudo-distance-regular whenever
this partition of the vertex set is pseudo-regular, that is, when the numbers

ck(i) =
1

νi

∑
j∈Γ(i)∩Ck−1

νj , ak(i) =
1

νi

∑
j∈Γ(i)∩Ck

νj , bk(i) =
1

νi

∑
j∈Γ(i)∩Ck+1

νj ,

with νi being the i-th component of the unique positive eigenvector of the adjacency
matrix of Γ with minimum component equal to one, ν, do not depend on the chosen
vertex i ∈ Ck, but only on the value of k. If this is the case, we denote them simply by
ck, ak and bk and call them the pseudo-intersection numbers. When the considered graph
Γ is regular, these parameters coincide with the usual intersection numbers and, in this
case, Γ is C-local pseudo-distance-regular if and only if C is a completely regular code.
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Notice that when a graph is {i}-local pseudo-distance regular for every vertex i and with
the same intersection numbers, it is distance-regular. By considering edges as sets of two
vertices, we can also see the graph from a global point of view. In this way, a connected
graph Γ is edge-distance-regular when it is e-local pseudo-distance-regular for every edge
e ∈ E, with intersection numbers not depending on e ∈ E.

Several quasi-spectral characterizations are known for local pseudo-distance-regularity,
most of them obtained through the predistance polynomials [5, 7]. In this paper we
develop the study of edge-distance-regularity and prove similar results to those known for
(vertex) distance-regularity.

3 Edge-spectrum regularity

Formally, we do not distinguish between an edge e ∈ E joining vertices u, v and the
set {u, v}. Thus, we denote the (local) e-multiplicities of Γ as me(λi) = ‖Eiee‖2, i =
0, 1, . . . , d, where

ee =
ρe
‖ρe‖

=
νueu + νvev√

ν2
u + ν2

v

.

From this, note that the relationship between the e-multiplicity and the local and crossed
multiplicities of u and v is

me(λi) =
1

ν2
u + ν2

v

(ν2
umu(λi) + 2νuνvmuv(λi) + ν2

vmv(λi)).

If |eve Γ| = de + 1, the eccentricity of e, seen as a set of two vertices, satisfies εe ≤ de.
We define the edge-diameter of Γ by D̃ = maxe∈E εe. Notice that D̃ coincides with
the diameter of the line graph LΓ of Γ. Consequently, if Γ have diameter D we have
D − 1 ≤ D̃ ≤ D and, if Γ is bipartite, D̃ = D − 1.

Lemma 3.1 The e-multiplicities of a connected graph Γ = (V,E) with spectrum sp Γ
satisfy the following properties:

(a)
d∑
i=0

me(λi) = 1 for every e ∈ E.

(b) If Γ is regular, then
∑
e∈E

me(λi) =
λ0 + λi

2
m(λi) for every λi ∈ ev Γ.

For every eigenvalue λi ∈ ev Γ, the mean vertex-multiplicity and mean edge-multiplicity
are, respectively,

g(λi) =
1

|V |
∑
u∈V

mu(λi) =
m(λi)

|V |
, g̃(λi) =

1

|E|
∑
e∈E

me(λi).
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Moreover, if Γ is regular, Lemma 3.1 gives:

g̃(λi) =
1

|E|
λ0 + λi

2
m(λi) =

1

λ0|V |
(λ0 + λi)m(λi) =

(
1 +

λi
λ0

)
g(λi).

Inspired by the concept of (vertex) spectrum-regularity, we say that Γ is edge-spectrum-
regular if, for every λi ∈ ev Γ, the edge-multiplicity me(λi) does not depend on e ∈ E.
Whereas spectrum-regularity implies regularity, in the case of edge-spectrum-regularity
we have the following result.

Proposition 3.2 Let Γ be a connected edge-spectrum-regular graph. Then, Γ is either
regular or bipartite biregular.

We say that a graph Γ is bispectrum-regular when it is both spectrum-regular and edge-
spectrum-regular. A graph is m-walk-regular if the number of walks of length k joining
two vertices depends only on the distance between them, provided that this distance is
at most m. Notice that a distance-regular graph with diameter D is D-walk-regular and
0-walk-regularity corresponds to walk-regularity.

Proposition 3.3 Γ is bispectrum-regular if and only if it is 1-walk-regular.

4 Edge-distance-regularity

Given a connected graph Γ = (V,E) and an edge e ∈ E, consider the partition of V
induced by the distance from e, that is V = e0 ∪ e1 ∪ · · · ∪ eεe , where ek = Γk(e). We
say that Γ is e-local pseudo-distance-regular if this partition is pseudo-regular. One of the
advantages of considering edges is that we can see the graph from a global point of view,
that is, from every edge, in the same way as we get distance-regularity by seeing the graph
from every vertex.

Definition 4.1 A graph Γ is edge-distance-regular when it is e-local pseudo-distance-
regular for every edge e ∈ E, with intersection numbers not depending on e ∈ E.

Proposition 4.2 Let Γ be an edge-distance-regular graph with diameter D and d + 1
distinct eigenvalues. Then, Γ is regular and

(a) Γ has spectrally maximum diameter (D = d) and its edge-diameter satisfies D̃ = D
if Γ is nonbipartite and D̃ = D − 1 otherwise.

(b) Γ is edge-spectrum regular and, for every e ∈ E, the e-spectrum satisfies:

(b1) If Γ is nonbipartite, eve Γ = ev Γ and me(λi) =
(

1 + λi
λ0

)
m(λi)
|V | , λi ∈ ev Γ.
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(b2) If Γ is bipartite, eve Γ = ev Γ \ {−λ0} and me(λi) =
(

1 + λi
λ0

)
m(λi)
|V | ,

λi ∈ ev Γ \ {−λ0}.

Definition 4.3 The k-incidence matrix of Γ = (V,E) is the (|V |×|E|)-matrix Bk = (bue)
with entries bue = 1 if ∂(u, e) = k, and bue = 0 otherwise.

Theorem 4.4 A regular graph Γ with edge-diameter D̃ is edge-distance-regular if and
only if, for every k = 0, 1, . . . , D̃, there exists a polynomial p̃k of degree k such that
p̃k(A)B0 = Bk.

Godsil and Shawe-Taylor [8] defined a distance-regularized graph as that being distance-
regular around each of its vertices (these graphs are a common generalization of distance-
regular graphs and generalised polygons). They showed that distance-regularized graphs
are either distance-regular or distance-biregular. Inspired by this, we introduce the fol-
lowing concept.

Definition 4.5 A regular graph Γ is said to be edge-distance-regularized when it is edge-
distance-regular around each of its edges.

Let evE Γ =
⋃
e∈E eve Γ and denote by ev?E Γ = evE Γ \ {λ0} and d̃ = |ev?E Γ|. If Γ is

edge-distance-regular, Proposition 4.2 establishes that evE Γ = ev Γ if Γ is nonbipartite,
and evE Γ = ev Γ \ {λ0} otherwise. Consider the canonical orthogonal system {p̃k}0≤k≤d̃
associated to (evE Γ, g̃), and their sum polynomials {q̃k}0≤k≤d̃ defined by q̃k = p̃0 + p̃1 +
· · ·+ p̃k.

Theorem 4.6 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Hd̃−1 be the
harmonic mean of the numbers |Nd̃−1(e)| for e ∈ E. Then, Γ is edge-distance-regularized
if and only if Hd̃−1 = 2q̃d̃−1(λ0).

Using that the harmonic mean is always smaller than or equal to the arithmetic mean and
the relation between the sum polynomials and the predistance polynomials we get:

Corollary 4.7 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Md̃ be the (arith-
metic) mean of the numbers |ed̃| for e ∈ E. Then, Γ is edge-distance-regularized if and
only if Md̃ = 2p̃d̃(λ0).

As a consequence we have the following theorem, which can be seen as an analogue for
the Spectral Excess Theorem for (vertex) distance-reguarity [7, 9].

Theorem 4.8 A regular graph Γ = (V,E) with d̃ = |evE Γ| is edge-distance-regular if and
only if, for every edge e ∈ E, |ed̃| = 2p̃d̃(λ0).
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We remark that, as proved in [3], we can specify the value of p̃d̃ in terms of the edge

spectrum. In what follows, π0 =
∏d
j=1(λ0 − λj), π̂0 =

∏d
j=1(λ0 + λj) and πi = (λi +

λ0)
∏d̃
j=0,j 6=i |λi−λj |, 0 ≤ i ≤ d, are moment-like parameters computed from the spectrum.

Theorem 4.9 Let Γ = (V,E) be a regular graph with d + 1 distinct eigenvalues, and
spectrally maximum edge-diameter D̃ = d̃. Then, Γ is edge-distance-regular if and only if,
for every edge e ∈ E,

|eD̃| =
4|E|
π2

0

(
d∑
i=0

λ0 + λi
m(λi)π2

i

)−1

.

Proposition 4.10 Let Γ be a λ0-regular graph with edge-diameter D̃ = | ev? Γ| = d.
Assume that, for every vertex u ∈ V and every edge e ∈ E,

|ed|
|ud|

=
π̂0

π0

|V |
(−1)d pd(−λ0)

,

where pd is the d-th predistance polynomial of Γ. Then, Γ is edge-distance-regular if and
only if it is distance-regular.

A distance-regular graph Γ with diameter D and odd-girth (that is, the shortest cycle of
odd length) 2D + 1 is called a generalized odd graph, also known as an almost-bipartite
distance-regular graph or a regular thin near (2D + 1)-gon. The name is due to the fact
that the odd graphs Ok fulfil such conditions [1]. In this case, the intersection parameters
of Γ satisfy a0 = a1 = · · · = ad−1 = 0 and ad 6= 0. Van Dam and Haemers [10] showed
that any connected regular graph with d+ 1 distinct eigenvalues and odd-girth 2d+ 1 is a
generalized odd graph. In [4], it was shown, through an algebraic approach, that the same
result holds when Γ is both distance-regular and edge-distance-regular. Here, we provides
a combinatorial proof.

Theorem 4.11 Let Γ be a distance-regular graph with diameter D = d and intersection
array  0 c1 · · · cd−1 cd

a0 a1 · · · ad−1 ad
b0 b1 · · · bd−1 0

 .

Then, Γ is edge-distance-regular if and only if it is either bipartite or a generalized odd
graph. In this case, when Γ is nonbipartite, the edge-intersection array is: 0 c̃1 · · · c̃d−1 c̃d

ã0 ã1 · · · ãd−1 ãd
b̃0 b̃1 · · · b̃d−1 0

 =

 0 c1 · · · cd−1 2cd
c1 c2 − c1 · · · cd − cd−1 ad − cd
b1 b2 · · · ad 0

 ,

and, when Γ is bipartite: 0 c̃1 · · · c̃d−2 c̃d−1

ã0 ã1 · · · ãd−2 ãd−1

b̃0 b̃1 · · · b̃d−2 0

 =

 0 c1 · · · cd−2 cd−1

c1 c2 − c1 · · · cd−1 − cd−2 b0 − cd−1

b1 b2 · · · bd−1 0

 .
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Proposition 4.12 Let Γ be a nonbipartite distance-regular graph with with intersection
numbers ck, ak, bk, 0 ≤ k ≤ d, and (pre)distance polynomials {pk}0≤k≤d. Then, the fol-
lowing statements are equivalent:

(a) Γ is edge-distance-regular.

(b) a0 = a1 = · · · = ad−1 = 0 and ad 6= 0.

(c) For every k = 0, 1, . . . , d, pk has even parity for even k and odd parity for odd k. In
this case, the edge-distance polynomials {p̃k}0≤k≤d are:

p̃k = pk − pk−1 + pk−2 − · · ·+ (−1)kp0 (0 ≤ k ≤ d− 1),

p̃d = 1
2(pd − pd−1 + pd−2 − · · ·+ (−1)dp0).
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Electrical power networks must be continually monitored in order to optimize their use and to 

avoid blackouts. This task is usually performed by placing Phase Measurement Units (PMUs) at 

selected network locations. A PMU reading consists of a complex number that represents both, 

the magnitude and phase angle of the sine waves found in electricity. Typically, PMUs  are 

placed at widely dispersed locations in the power system network and synchronized from the 

common time source of a global positioning system (GPS).  However, due to the high cost of 

each PMU, it is important to minimize the number of PMUs used to monitor a given power 

network. This problem leads to an optimization problem in graph theory: given a graph modeling 

a power network, find the minimum number of nodes, and their locations, where PMUs must be 

placed in order to monitor the entire network. This problem is the referred to as the power 

domination problem. 

Formally, the power domination problem in graphs can be formulated in the following way. 

Given a graph G and a set of vertices S, initially, S monitors all the vertices in it, and their 

neighbors.  Then, we apply the following rule: if a monitored vertex has exactly one non-

monitored neighbor, then the non-monitored neighbor becomes monitored. The application of 

this rule is iterated until it no longer detects new vertices that can be monitored. At that point, if 

all the vertices are monitored, then S is a power dominating set of G. Therefore, the power 

domination problem consists of finding a minimal power dominating set for a given graph. 

The power domination decision problem has been proven to be NP-complete [T.W. Haynes, 

S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning,] even when reduced to certain classes of 

graphs, such as bipartite graphs and chordal graphs [T.W. Haynes, S.M. Hedetniemi, S.T. 

Hedetniemi, M.A. Henning,] or even split graphs [C.S. Liao, D.T. Lee], a subclass of chordal graphs. 

However, Liao and Lee presented a linear time algorithm for solving his problem on interval 

graphs, if the interval ordering of the graph is provided. If the interval order is not given, they 

provided a polylogarithmic algorithm of O(n log n) and proved that it is asymptotically optimal. 

Other efficient algorithms have been presented for trees [J. Kneis, D. MÄolle, S. Richter, P. 

Rossmanith,] and more generally, for graphs with bounded treewidth [J. Kneis, D. MÄolle, S. 

Richter, P. Rossmanith,]. On block graphs [G. Xu, L. Kang, E. Shan, M. Zhao], claw-free g phs M. 

Zhao, L. Kang, G. Chang], and generalized Petersen graphs [R. Barrera, D. Ferrero] there are upper 

bounds given for the power domination number. Closed formulas exist for only a few families of 

graphs: rectangular grids [M. Dorfling, M. Henning], hexagonal meshes [D. Ferrero, S. 

Varghese, A. Vijaykumar] and some families of cylinders and tori [R. Barrera, D. Ferrero].  

In this talk we will present the basic concepts in relation to power domination in graphs, some 

known results, and some future lines of research. 
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Cycles in cartesian products of graphs
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Let G and H be two graphs. The cartesian product of G and H is the graph
with vertex set V (G) × V (H) and the edge {(u1, v1), (u2, v2)} is present in the
product whenever u1 = u2 and v1v2 ∈ E(H) or symmetricaly v1 = v2 and
u1u2 ∈ E(G). It is denoted by G�H .

The interest in the study of Hamiltonian properties of prisms (cartesian
product of G and K2 ) and generally cartesian products of graphs goes back to
the paper of Barnette and Rosenfeld [1]. They showed that the cartesian product
of a graph G and a clique or a cycle on n vertices is Hamiltonian assuming that
the maximum degree of G is less or equal to n. The necessary and sufficient
condition for a graph G to have Hamiltonian prism was given by Paulraja in
the paper devoted to the existence of a Hamiltonian cycle in 3-connected cubic
graphs, see [8].

Since those results, many sufficient conditions fo hamiltonicity, pancyclicity
and further cyclic properties in prisms or cartesian products by paths, cycles
and cliques have be given, (see for example ([3], [4] [5], [6])

One of those results, due to Ozeki ([7]) is a degree conditions for prism
hamiltonicity, where σ3(G) is the minimum degree sum of any three independant
vertices :

Theorem 1 Let G be a connected graph of order n ≥ 2. If σ3(G) ≥ n, then the
prism of G is hamiltonian.

Instead of considering the existence of cycles of given length in the cartesian
product, we can look for cycles containing specific vertices. For example in [2],
a localisation of Ozeki’s result is given, where σ3(G) is the minimum degree
sum of any three independant vertices of S (notice that G is not necessarily
connected but S has to be included in a connected subgraph of G):

Theorem 2 Let G be a graph, |V (G)| ≥ 2, S ⊆ V (G) and S is 1G-connected.
If σ3(S) ≥ n then there is a cycle in G�K2 that contains the two copies of S.

We will survey some classical results in the field and discuss conditions for
cycles through given vertices in the cartesian product of G with paths, cycles
and cliques.

1
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Abstract

Let G = (V,E) be a connected graph with n = |V | vertices and a weight function
ρ that assigns a nonnegative number to each of its vertices. Then, the ρ-moment of
G at vertex u is defined as

Mρ
G(u) =

∑

v∈V

ρ(v) dist(u, v)

where dist(·, ·) stands for the distance function. Adding up all these numbers, we

obtain the ρ-moment of G:

Mρ
G =

∑

u∈V

Mρ
G(u) =

1

2

∑

u,v∈V

dist(u, v)(ρ(u) + ρ(v)).

This parameter generalizes, or it is closely related, to some well-known graph invari-

ants, such as the Wiener index W (G), when ρ(u) = 1/2 for every u ∈ V , and the

degree distance D′
(G), obtained when ρ(u) = δ(u), the degree of vertex u.

In this talk we discuss some exact formulas for computing the ρ-moment of a graph

obtained by different operations, such as the hierarchical product, of graphs, in terms

of the corresponding ρ-moments of their factors. As a consequence, we provide a

method for obtaining nonisomorphic graphs with the same ρ-moment. In the case

when the factors are trees and/or cycles, algebraic techniques (distance matrices,

eigenvalues, etc) allow us to give formulas for the degree distance of their product.
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1 Introduction

This contribution is devoted to a family of extremal graphs – edge-minimal graphs with
respect to diameter. So our objects of interest are graphs in which the diameter is in-
creasing after removing of an arbitrarily chosen edge. This class of graphs is very rich and
quite well explored (for example see [1], [2], [5], [6], [7], [8], [10], [15]), therefore we will
focus on one of its subclass, the so-called goal-minimally k-diametric graphs (k-GMD for
short). These graphs are of diameter k and such that after the removing of an arbitrary
edge uv the new graph will be of diameter k + 1, and the only pair of vertices in distance
k + 1 will be the (unordered) pair {u, v}. Graphs with this property were introduced by
Kyš in 1980 (see [14]) and studied by Plesńık and Gliviak (see [9], [16]).

A graph G is said to be goal-minimal of diameter k or goal-minimally k-diametric
(k-GMD for short), if the diameter of G is equal to k, and for every edge uv ∈ E(G) the
inequality dG−uv(x, y) > k holds if and only if {u, v} = {x, y}. The easiest examples of
such graphs are the complete graphs, which are 1-GMD.

From practical point of view the following characterization of k-GMD graphs is very
useful:

Theorem 1 Let k be a positive integer. A graph G with order at least 3 is k-GMD if and
only if the following conditions hold simultaneously:

(i) For any two non-adjacent vertices u and v in G, there exist two independent u−v paths
of length not exceeding k.

(ii) G has diameter k.

(iii) G has girth k + 2.

∗Research supported by Slovak Scientific Grant Agency VEGA No. 1/0406/09.
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Kyš [14] conjectured that for every positive integer k there exists a k-GMD graph.
The main challenge in this topic is to prove (or disprove) this conjecture. Kyš discovered
such graphs only for k = 1, 2, 3, 4, 6, and for k = 1, 2, 4 he gave infinite families of k-
GMD graphs. In [16] Plesńık showed the first examples of k-GMD graphs for diameters
k = 5, 7, 8, 10, 12, 14, and constructed the first infinite family of 6-GMD graphs. Recently,
Štupáková in her master thesis [18] constructed an infinite family of 8-GMD and 10-GMD
graphs by joining leaves of two trees with paths of length 2.

Our effort to construct new k-GMD graphs and infinite families was successful due
to methods of voltage graphs and Cayley graphs. These methods together with obtained
results will be described in further sections.

2 Voltage graphs

One of the methods, by which we tried to find new k-GMD graphs, was the method of
voltage graphs (also known as lifts) known mainly from topological graph theory. This
method is surveyed in [11] by Gross and Tucker. An important advantage of this method
is that that we need not to create the entire graph (lifted graph), because many of its
properties (like diameter and girth) may be directly derived from the voltages and the
base graph, which is usually much smaller than the lifted graph.

By this method we were able to reconstruct the known infinite families of 1-GMD,
2-GMD and 4-GMD graphs constructed by Kyš, Gliviak and Plesńık. Moreover, we
designed an infinite family of 5-GMD graphs, which is the first known non-trivial infinite
family for odd diameter at all.

0 0 0 1 2 n− 1

n
0

x1 x2 xn−1

u v

Figure 1: The voltage graph for 5-GMD graphs with voltages in Z2n.

Theorem 2 [12] The voltage graph depicted in Figure 1 gives a 5-GMD graph for all
positive integer n ≥ 2 after lifting in the cyclic group Z2n.

Furthermore, we showed the first examples of k-GMD graphs for diameter k = 9
and k = 13. We also designed a possible infinite family of 3-GMD graphs. This family
contains infinitely many 3-GMD graphs, if there exists an infinite sequence of pairs (m, r)
of integers such that there exists a relative (m, 2, r, 1)-difference set. Our constructions
used only cyclic groups as voltage groups, so this method offers a lot of opportunities for
further research. More details about our results one can find in [12].
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3 Cayley graphs

The next successful construction is the well-known Cayley graph construction. For each
projective special linear group PSL2(q) with q ≤ 103 we found three generators (involu-
tions) such that the resulting cubic Cayley graph was a k-GMD graph for some integer k.
This choice of the group was motivated by Conder [3] who constructed trivalent Cayley
graphs in order to find small (δ, g)-graphs, i.e. small regular graphs of valency δ and girth
g which are also known as near-cages.

Among our cubic Cayley graphs one can find k-GMD graphs of diameters 16, 18–24
and 26. This means that the largest integer k for which we have a k-GMD graph is 26.

Unfortunately, we did not recognize any connections between the generators of these
graphs, so it would be interesting to solve the problem: How to choose the group and the
generators in order to obtain a k-GMD graph as a Cayley graph?

4 Cages

As one could notice, by Theorem 1 follows that k-GMD graphs have fixed girth k + 2,
and they are minimal in some sense. So we can expect that there is some relationship
between them and cages – which are minimal graphs with prescribed degree and girth.

We took the list of known cages (see [4]) and checked them whether they are k-GMD
or not. Except two of eighteen (3, 9)-cages, each known cage G satisfies the equivalence
dG−uv(x, y) > k ⇐⇒ {u, v} = {x, y} for k = g − 2 (g is the girth), but a lot of them
does not have diameter k. Graphs with these properties are the so-called goal-minimally
k-elongated graphs (see [13]). After realizing these observations Plesńık [17] formulated a
conjecture:

Conjecture [Plesńık]. If a (δ, g)-cage has diameter g − 2, then it is a (g − 2)-GMD
graph.

5 Conclusion and open problems

The current situation about k-GMD graphs shows that we are still far away from the
solution of Kyš’s conjecture, because they are known only for 22 distinct values of k.
It would be a great success to design a construction which would give k-GMD graphs
for infinitely many values of k. A partially success would be to solve some of the above
mentioned open problems.

Acknowledgment
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The packing chromatic number of distance graphs

Přemek Holub

with J. Ekstein and B. Lidický

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that

vertices of G can be partitioned into disjoint classes X1, ..., Xk where vertices in Xi have

pairwise distance greater than i. The concept of packing coloring comes from the area

of frequency planning in wireless networks. This model emphasizes the fact that some

frequencies are used more sparely than the others.

The very first results about packing chromatic number were obtained by Slopper [7].

He studied an eccentric coloring but his results were directly translated to the packing

chromatic number. The concept of packing chromatic number was introduced by Goddard

et al. [5] under the name broadcast chromatic number. The term packing chromatic number

was later proposed by Brešar et al. [1]. The determination of the packing chromatic number

is computationally difficult. It was shown to be NP-complete for general graphs in [5].

Fiala and Golovach [3] showed that the problem remains NP-complete even for trees.

The research of the packing chromatic number was driven by investigating χρ(Z
2
)

where Z
2
is the Cartesian product of two infinite paths - the (2-dimensional) square lattice.

Goddard et al. [5] showed that 9 ≤ χρ(Z
2
) ≤ 23. Fiala et al. [4] improved the lower bound

to 10 and Holub and Soukal [6] improved the upper bound to 17. The lower bound was

pushed further to 12 by Ekstein et al. [2].

Let D = {d1, d2, ..., dk}, where di are positive integers and i = 1, 2, ..., k. The (infinite)

distance graph G(Z, D) with distance set D has the set Z of integers as a vertex set and

in which two distinct vertices i, j ∈ Z are adjacent if and only if |i− j| ∈ D.

The study of a packing coloring of distance graphs was initiated by Togni [8]. For large

values of t Togni proved the following theorem.

Theorem 1 [8]. For every q, t ∈ N:

χρ(D(1, t)) ≤



86 if t = 2q + 1, q ≥ 36,
40 if t = 2q + 1, q ≥ 223,
173 if t = 2q, q ≥ 87,
81 if t = 2q, q ≥ 224,
29 if t = 96q ± 1, q ≥ 1,
59 if t = 96q + 1± 1, q ≥ 1.

We improve some results of Theorem 1 as follows.

Theorem 2. For any odd integer t ≥ 575,

χρ(D(1, t)) ≤ 35.

For any even integer t ≥ 648,
χρ(D(1, t)) ≤ 56.

The access to the METACentrum computing facilities, provided under the programme

”Projects of Large Infrastructure for Research, Development and Innovations”LM2010005

funded by the Ministry of Education, Youth and Sports of the Czech Republic, is highly
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We use the term (k, g)-graph to denote a (finite, simple) k-regular graph of girth g.
A (k, g)-cage is a smallest k-regular graph of girth g; its order is denoted by n(k, g).
The value of n(k, g) is known for a very limited set of parameters (k, g), and we refer
to the problem of finding the (k, g)-cages and determining the value of n(k, g) as the
Cage Problem [3].

A (∆, D)-graph is similarly a (finite, simple) ∆-regular graph of diameter D. The
Degree/Diameter Problem is the problem of determining the order n∆,D of the largest
(∆, D)-graphs. As is the case for cages, the order of the largest (∆, D)-graphs is only
determined for very limited classes of parameters [9].

The well-known Moore bound serves simultaneously as a lower bound on the order
of cages and as an upper bound on the order of (∆, D)-graphs. In terms of k and g,
it can be stated as follows:

M(k, g) =

{
1 + k + k(k − 1) + ...+ k(k − 1)(g−3)/2, g odd
2(1 + (k − 1) + ...+ (k − 1)(g−2)/2), g even

(1)

Graphs whose order is equal to the Moore bound (for the corresponding param-
eters) are called Moore graphs, but are known to exist for only a few pairs of pa-
rameters and for most parameter sets are unattainable. Although the Cage and the
Degree/Diameter Problems are often thought of as mutually dual problems tied to-
gether through their relation to the Moore bound, the study of the relation between
the order of the extremal graphs and the Moore bound M(k, g) is disproportionally
more developed on the side of cages [7, 2] and the survey paper [9] specifically states
that “Finding better (tighter) upper bounds for the maximum possible number of
vertices, given the other two parameters, and thus attacking the degree/diameter
problem ‘from above’, remains a largely unexplored area”. One of the aims of our
presentation is to address this issue in the case of vertex-transitive and Cayley graphs.
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A vertex-transitive graph is a graph with an automorphism group that acts tran-
sitively on its set of vertices. A Cayley graph is a vertex-transitive graph that admits
the existence of an automorphism group acting regularly (transitively but with triv-
ial vertex stabilizers) on its vertex set. Vertex-transitive and Cayley graphs play
an important role in the Cage and Degree/Diameter Problems; with a significant
proportion of the known extremal graphs as well as of the current record holders be-
ing vertex-transitive or even Cayley. Thus, the study of vertex-transitive (k, g)- and
(∆, D)-graphs bears the dual benefit of potentially producing new extremal graphs
or records as well as improving our understanding of the role of symmetry in the
constructions of graphs extremal with respect to the two problems.

Once again, a disparity exists between the level of our knowledge of vertex-
transitive (k, g)-graphs and of vertex-transitive (∆, D)-graphs. Both general vertex-
transitive and Cayley graphs are known to exist for any pair of parameters (k, g)
[10, 8, 6, 5], but no equivalent constructions are known for given ∆ and D. Further-
more, improved bounds (as compared to the Moore bound) have been found for the
order of vertex-transitive (k, g)-graphs in [6]:

Theorem 0.1 ([6]) Let G be a vertex-transitive graph of valence k and girth g =
pr > k, where p is an odd prime and r ≥ 1. If G is not a Moore graph (that is,
|V (G)| > M(k, g)), and g is relatively prime to all the integers in the union⋃

0≤i≤k

L(k, g, i),

where L(k, g, 0) = {M(k, g) + 1,M(k, g) + 2, . . . ,M(k, g) + k}, and L(k, g, i) =
{k(k− 1)(g−1)/2− ik, k(k− 1)(g−1)/2− ik+ 1, . . . , k(k− 1)(g−1)/2− ik+ i− 1}, i > 0,
then the order of G is at least M(k, g) + k + 1.

In addition, several relations have been determined that tie together the girth of
Cayley graphs of nilpotent or solvable groups and their nilpotency or derived length
[1, 4]. For example, the girth of Cayley graphs based on nilpotent groups of nilpotency
ν have been shown to be bound from above by ν2.

In our talk we will present a solution to the disparity between our understand-
ing of vertex-transitive (k, g)- and (∆, D)-graphs at least for the case of the last two
above mentioned problems: the order of vertex-transitive (∆, D)-graphs as compared
to the Moore bound and the relation between the nilpotency/solvability and the
diameter of the resulting Cayley or vertex-transitive graphs. The results are surpris-
ingly similar to the case of cages, both in flavor and in the actual bounds obtained.
This further reinforces the often cited but poorly understood duality of the Cage and
Degree/Diameter Problems.
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Mixed Moore Graphs and Directed strongly regular graphs
Leif K. Jørgensen

Aalborg University, Denmark

In 1988, A. Duval [2] introduced a generalization of strongly regular
graphs to directed graphs. A directed strongly regular graph with parame-
ters (n, k, t, λ, µ) is a directed graph on n vertices with adjacency matrix A
that satisfies

A2 = tI + λA+ µ(J − I − A) and JA = AJ = kJ, (1)

where J is the all 1 matrix and I is the identity matrix. Thus every vertex
is incident to t undirected edges and there are z = k − t edges directed out
from a vertex and z edges directed into the vertex. The number of paths
from u to v of length 2 is either λ or µ depending on whether there is an
edge from u to v or not.

In recent years several papers on directed strongly regular graphs have
appeared (e.g. [3], [4], [6], [7], [8], [10]).

A mixed Moore graph is a directed strongly regular graph with µ = 1
and λ = 0, i.e., for every pair (u, v) of distinct vertices there is a unique
path of length at most 2 from u to v. These graphs were investigated by
Bosák [1] and by Nguyen, Miller and Gimbert [5]. It is known that for every
k there is a unique mixed Moore graph with t = 1 and n = k(k + 1) and for
n = 18, t = 3, k = 4 there is a unique mixed Moore graph, called the Bosák
graph. The first open cases have orders 40, 54, 80, 88, 108.

We will apply theory and ideas from directed strongly regular graphs to
mixed Moore graphs. In particular many directed strongly regular graphs
have been constructed as (generalizations of) Cayley graphs (see e.g. [3], [6],
[10]), but it is known that they can not be Cayley graphs of abelian groups,
see [6] or [9].

Many Mixed Moore graphs also appear as Cayley graphs, including the
Bosák graph and a new mixed Moore graph with n = 108, t = 3, k = 10. This
new mixed Moore graph seems to have some relation to the Bosák graph.
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On 3-arc graphs

Martin Knor

Joint work with Guangjun Xu and Sanming Zhou.

Let G be a graph. Its 3-arc graph, X(G), has vertex set identical with the set of

arcs of G. Hence, |V (X(G))| = 2|E(G)|. Two arcs of G, say −→uv and −→xy, correspond

to adjacent vertices in X(G) if and only if both (v, u, x) and (u, x, y) are paths of

length 2 in G. In such a case {u, x} is an edge of G and (v, u, x, y) is a 3-arc. The

later gave the name to the graph operator.

3-arc graphs were recently used in the classification and characterization of sev-

eral families of arc-transitive graphs. They are related to line graphs, second iterated

line graphs and to path graphs formed by paths of length two.

On IWONT 2007 in Pilsen, Sanming Zhou proposed to study graph-theoretical

properties of 3-arc graphs. We study the connectivity, diameter, independence,

domination and colourings. For all these invariants, our intention was to bound the

parameter of 3-arc graph X(G) using the corresponding parameter of G.

Obviously, if G has a vertex of degree 1, then X(G) contains an isolated vertex.

Even the graphs with minimum degree 2 cause troubles, especially when studying

the connectivity and the diameter. On the other hand, if the minimum degree of G
is at least 3, then the problems are easier.
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Abstract

Given the values of the maximum degree d and the diameter k of a graph, there

is a natural upper bound Md,k for its number of vertices known as the Moore bound .
Graphs that achieve this bound (Moore graphs) are very rare and this special situation

has stimulated research on various relaxations of the Moore graph constraints. One way

to do it is by allowing the existence of vertices with eccentricity just one more than

the value k they should have. In this context, regular graphs of degree d, radius k,
diameter ≤ k+ 1 and order equal to Md,k are referred to as radial Moore graphs. So far,

constructions of these extremal graphs are only known for small values of the degree and

the radius. Radial Moore graphs have been classified according to their closeness to a

theoretical Moore graph using the status vector of the graph.

In this work, we define optimal radial Moore graphs as the bests graphs ranked ac-

cording to the status vector classification. We show an heuristic method based on edges

swaps operations that changes a radial Moore graph for another one with ‘better’ status

vector. Finally, we apply such heuristic method for the cases of radius k = 2 and degrees

5 ≤ d ≤ 9 obtaining in each case a radial Moore graph close related to the optimal one.

Keywords: Moore bound, radial Moore graph, ranking measure, status vector.

1 Introduction

The maximum number of vertices in any graph of specified degree and diameter, denotedMd,k,

is given by the well-known Moore bound, which states that a graph of order n, maximum

degree d, and diameter k satisfies

n ≤ Md,k = 1 + d+ d(d− 1) + · · ·+ d(d− 1)
k−1. (1)

Graphs achieving this bound are called Moore graphs. In the case of diameter k = 2, Hoffman

and Singleton [6] proved that Moore graphs exist for d = 2, 3, 7 (being unique) and possibly

d = 57, but for no other degrees. They also showed that for diameter k = 3 and degree

d > 2 Moore graphs do not exist. The enumeration of Moore graphs of diameter k > 3 was

concluded by Damerell [4], who used the theory of distance-regularity to prove their nonex-

istence unless d = 2, which corresponds to the cycle graph of order 2k + 1 (an independent

proof was given by Bannai and Ito [1]).
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The fact that there are very few Moore graphs suggested the study of graphs that are

in various senses ‘close’ to being Moore graphs. This ‘closeness’ has been usually measured

as the difference between the (unattainable) Moore bound and the order of the considered

graphs. In this sense, the existence of graphs with small ‘defect’ δ (order n = M(d, k) − δ)
has deserved much attention in the literature (see [8]). Another kind of approach considers

relaxing some of the constraints implied by the Moore bound. From its definition, all vertices

of a Moore graph have the same degree (d) and the same eccentricity (k). We could relax

the condition of the degree and admit few vertices with degree d + δ, as Tang, Miller and

Lin [9] did for the directed case. Alternatively, we may allow the existence of vertices with

eccentricity just on more than the value k they should have. In this context, regular graphs

of degree d, radius k, diameter ≤ k+1 and order equal to Md,k are referred to as radial Moore
graphs1.

Figure 1 shows all radial Moore graphs of radius k = 2 and degree d = 3. The existence

of radial Moore graphs has been proved for radius k ≤ 3 and any degree (see [5], [7]). So

far, only a few radial Moore graphs have been found for other values of the degree d and

the radius k; more precisely, for (d, k) equal to (3, 4), (4, 4), (5, 4) and (3, 5). Besides, the

complete enumeration of these extremal graphs is known for the cases (3, 2), (3, 3) and (4, 2).
Capdevila et al. (see [3]) provide a measure to rank the population of radial Moore graphs

according to their ‘proximity’ to a theoretical Moore graph, as we explain in the next section.

2 Status vector measure

Let G = (V,E) be a connected graph. Given two vertices u and v of G, the distance between

u and v, d(u, v), is the length of a shortest path joining them. The sum of all distances

to a vertex v, s(v) =
∑

u∈V d(u, v), is referred to as the status of v (see [2]). The status
vector of G, s(G), is defined as the vector constituted by the status of all its vertices, given

in nondecreasing order; that is, s(G) = (s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn. Depending

on the graph, the status vector could be too long to be descrived as a vector, then we write

it as a sequence, with multiplicities indicated by superscripts. The total status of G, s(G),

is the sum of all its status: s(G) = ‖s(G)‖1 =
∑

v∈V s(v) =
∑

u,v∈V d(u, v). The status

vector sd,k of a Moore graph or degree d and radius k is the vector of dimension Md,k whose

components are all equal to
∑k

i=1 i · d(d − 1)
i−1

. This is due to the fact that if we view

the Moore graph from any of its vertices, say v, we see exactly d vertices at distance one

from v; d(d− 1) vertices at distance two from v; and so on up to distance k, where we have

d(d− 1)
k−1

vertices. For any connected regular graph G of degree d and order Md,k, we have

that s(v) ≥
∑k

i=1 i · d(d − 1)
i−1

, ∀v ∈ V (G), and equality holds for every vertex if and only

if G is a Moore graph (see [3]).

Let us denote by RM(d, k) the set of all nonisomorphic radial Moore graphs of degree d
and radius k. Let G ∈ RM(d, k), the norm status of G is

N(G) = ‖s(G)− sd,k‖1
that is, N(G) measures the difference between the total status of G and the status corre-

sponding to a Moore graph. We can see N(G) as a measure of ‘how far’ is a radial Moore

1These extremal graphs have also been named radially Moore graphs.
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graph to being a Moore graph in the following sense: If G and G′
are both radial Moore

graphs of degree d and radius k such that N(G) < N(G′
), then G has an status vector

‘closer’ to sd,k than the corresponding status vector of G′
.

Example 1. In the particular case of degree d = 3 and radius k = 2, RM(3, 2) has just five
graphs, shown in figure 1. Their status vectors are

s(G1) : 15, 17
9
; s(G2) : 15, 16

4, 17
5
; s(G3) : 15

4, 17
6
; s(G4) : 15

2, 16
8.

Taking into account that s3,2 : 15
10, which corresponds to the status vector of the Petersen

graph, we have

N(G1) = 18, N(G2) = 14, N(G3) = 12 and N(G4) = 8

Hence G4 has its status vector closer to the minimum one s3,2.

G1 G2

G4 G3

Figure 1: All cubic radial Moore graphs of radius two.

3 Optimal radial Moore graphs

Let G ∈ RM(d, k), we say that G is an optimal radial Moore graph of degree d and radius
k if N(G) ≤ N(H), for all H ∈ RM(d, k). We denote by Ň(d, k) the norm status of an

optimal radial Moore graph. Obviously, in the cases (d, k) where Moore graphs exists then

Ň(d, k) = 0. In general, the value of Ň(d, k) is known only for a small set of values of (d, k):
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there is a unique optimal radial Moore graph for the case (3, 3) (and in this case Ň(3, 3) = 24).

Besides, Ň(4, 2) = 18 and there are two optimal radial Moore graphs H4 and Ĥ4 achieving

such value (see figure 2). The graph H4 belongs to a particular family Hd of radial Moore

graphs of degree d ≥ 4 and radius two where the status vector is known (see [3]):{
s(Hd) = (2d2 − d)2d, (3d2 − 6d+ 6)

d2−2d+1

N(Hd) = (d− 1)
2
(d− 2)(d− 3)

Captdevila et al. suspect that Hd is farther apart from an optimal radial Moore graph of

radius two and degree d, as d ≥ 4 becomes bigger and they post the problem of finding radial

Moore graphs with smaller norm status than Hd. In general, the value of Ň(d, k) has been

H4 Ĥ4

Figure 2: Minimum radial Moore graphs of degree four and radius two. The norm status of

both graphs is 18.

determined either in the cases where the Moore graph exists or when the total population of

radial Moore graphs is known.

4 An heuristic method to decrease the norm status of a radial
Moore graph

In this section we present an heuristic method, based on edges swaps operations, that seeks

radial Moore graphs with low norm status. To this end, we start with a radial Moore graph

G and let us consider v as a vector whose elements are the vertices of G ordered according

to its status, that is, v = (v1, v2, . . . , vn) such that s(v1) ≥ s(v2) ≥ . . . ≥ s(vn). We can think

that v1 is a ’bad’ vertex because its high status. We may decrease its status rewiring an edge

involving this vertex. Hence, we take w1 as a neighbor of v1 with higher status. We do the

same with vertex v2 and we obtain two ‘bad’ edges (v1, w1) and (v2, w2) of G. Now, we pro-

ceed to rewire as follows: we remove (v1, w1) and (v2, w2) from G and we add the new edges

(v1, w2) and (v2, w1). So, we obtain a new graph H which differs from G only in two edges.

We check if H has radius k and diameter ≤ k + 1 (the two-edges swaps operation preserves

the degrees of the vertices) and if it is so, we compute the value of N(H). If N(H) < N(G)

we succed, otherwise we can try it with the next pair of neighbors of v1 and v2. If every

neighbor of v1 and v2 gives a graph H such that does not satisfies N(H) < N(G), we follow

the next elements in the ordered list v. At the end, either we find a radial Moore graph H
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with lower norm status than G or we prove that every graph obtained by G doing two-edges

swaps operations has equal or higher norm status than G.

From another point of view, we can see this heuristic method as a movement into the

space RM(d, k). We move from a particular graph to another one if both graphs only differs

in a two-edges swaps operation. In fact, these movements are done into a bigger space (the

space of regular graphs of degree d on Md,k vertices), but we only admit a movement if in

adittion the new graph has radius k, diameter ≤ k + 1 and better norm status.

5 Radial Moore graphs of radius two with low norm status

We take Hd as a basis and we apply iteratively the heuristic method explained above in order

to find radial Moore graphs of radius two with low norm status. Sometimes, we can fall in

a graph such that any two-edges swaps does not decrease its norm status. To avoid this

situation, we admit (with a little probability ε) a ‘bad’ movement into RM(d, 2), that is,

ocasionally we may change to a new radial Moore graph with worse norm status than the

given graph. Since we already know the optimal graphs for degrees d = 3 and d = 4, we

start our experiment at d = 5. Nevertheless, we have applied our algorithm to these small

cases and for d = 3 we have realized that every graph G1, G2, G3 and G4 moves very fast

to the Petersen graph (which is the optimal one). For d = 4, we pick up at random a radial

Moore graph and we fall either to H4 or H
′
very fast too. Next, we see what happen for d ≥ 5:

We start withH5. In this case, N(H5) = 96 and after a few number of algorithm iterations

we get a graph H ′
5 (depicted in figure 3) such that N(H ′

5) = 36. This graph seems to be

unique (we do not find another radial Moore graph with the same norm status value) and it

has the lowest value of the norm status that we have reached. Moreover, for any positive even

integer 36 ≤ k ≤ 80, unless k = 38, there is a radial Moore graph having k as its norm status

(see figure 4). There are other graphs in RM(5, 2) with more central vertices (we have found

3 non-isomorphic graphs containing 11 central vertices), but H ′
5 has its status vector closer to

the minimum one s5,2 (see table 1). For degree six, we obtain a graph H ′
6 with N(H ′

6) = 78

which represents a significant improvement compared to N(H6) = 300. We already know

Figure 3: Radial Moore graphs H ′
5, H

′
6 and H ′

7.

the optimal radial Moore graph for the case (7, 2), which is the Hoffman-Singleton graph.

Starting at H7 graph (N(H7) = 720) we find the Hoffman-Singleton graph in about 1000
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iterations (although this number of iterations depends on ε). The closest radial Moore graph

H ′
7 to the Hoffman-Singleton graph found so far has norm status to 40 and it contains 26

central vertices (see figure 4). In addition, the automorphism group of H ′
7 has order 40,

hence we expect to draw it in the future showing more symmetries. Besides, we have checked

that H ′
7 is the radial Moore graph with lowest norm status that it can be obtained by the

Hoffman-Singleton graph in just two edges-swaps operations. Although we are quite sure
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Figure 4: Algorithm behaviour. Each dot in the diagram represents a graph found by our

algorithm in RM(d, 2).

that H ′
d are optimal radial Moore graphs for d ≤ 7, we suspect that H ′

d will be farther appart

from an optimal one for d = 8 and 9. In these cases take an important role the value of ε and
the number of iterations. For instance, if the algorithm runs 1000 iterations with ε = 0.01
the ‘best’ graph found has norm status equal to 854 for the case of degree 9. Besides, doing

10000 iterations with ε = 0.0001 we decrease that value to 784.
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s(G) N(G)

H5 45
10, 5116 96

H ′
5 45

6, 468, 478, 484 36

H6 66
12, 7825 300

H ′
6 66

5, 679, 6813, 695, 712, 723 78

H7 91
14, 11136 720

H ′
7 91

26, 9220, 964 40

H8 120
16, 15049 1470

H ′
8 120

1, 1231, 1243, 12513, 12622, 12713, 1287, 1292, 1302, 1311 408

H9 153
18, 19564 2688

H ′
9 153

1, 1595, 1608, 16111, 16213, 16314, 16414, 16511, 1663, 1672 784

Table 1: Status vector and norm status for the ‘bests’ graphs H ′
d to be compared with the

known values of Hd. For the special case of degree seven, H
′
7 is the closest radial Moore graph

to the Hoffman-Singleton graph.
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Search for properties of the missing Moore graph

Martin Mačaj and Jozef Širáň

1 Introduction

For any integers d, k ≥ 2 the order of a graph of maximum degree d and of diameter k is
bounded above by the Moore bound M(d, k) = 1 + d + d(d− 1) + . . . + d(d− 1)k−1; such
graphs of order equal to M(d, k) are known as the Moore (d, k)-graphs. It is well known
that, for d, k ≥ 2, Moore (d, k)-graphs exist only if k = 2 and d = 2, 3, 7, and possibly 57.
In the first three cases the Moore graphs are unique – the 5-cycle, the Petersen graph, and
the Hoffman-Singleton graph. For k = 2 and 3 this has been known since the pioneering
paper by Hoffman and Singleton [5] and for k ≥ 4 the result was proved independently by
Bannai and Ito [2] and Damerell [4].

The aim of this contribution is to investigate possible symmetries (in conjunction with
other properties) of the Moore (57, 2)-graph(s) the existence of which is still in doubt.
Throughout, let Γ be a Moore (57, 2)-graph and let G be its automorphism group.

The study of G was initiated by Aschbacher [1] by proving that G cannot be a rank 3
group. Later in a series of lectures for his graduate students, Graham Higman showed that
Γ cannot be vertex-transitive; see Cameron’s monograph [3] for an account of the proof.
The same argument shows that the order of G is not divisible by 4. This was taken further
by Makhnev and Paduchikh [7] by a closer investigation of the structure of G, assuming
that G contains an involution. A consequence of their investigation is the bound |G| ≤ 550
if G has even order.

With the help of a combination of spectral, group-theoretic, combinatorial, and com-
putational methods we prove that |G| can assume only a very restricted set of values. As
a corollary we obtain the inequality |G| ≤ 375 with no restriction on the parity of |G|.

2 Ingredients

Throughout, let X be an arbitrary subgroup of G and let A be the adjacency matrix of Γ.
It is known that the eigenvalues of A are 57, 7, and −8.

We recall that Higman’s approach was backed by the following result.

Theorem 1 Let V0, V1, V2 be the eigenspaces of A for eigenvalues 57, 7, and −8, re-
spectively. Let χ0, χ1 and χ2 be characters of restrictions of X onto V0, V1 and V2,
respectively. For x ∈ X let ai(x) = |{v ∈ Γ; d(v, vx) = i}|, i = 0, 1, 2. Finally, let
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P =

 1 1 1
57 7 −8

3192 −8 7

 and Q = 1
3250

 1 1 1
1729 637/3 −13/3
1520 −640/3 10/3

. Then Q = P−1 and

(χ0(x), χ1(x), χ2(x))T = Q(a0(x), a1(x), a2(x))T .

We have a number of additional observations regarding the parameters ai and begin
with stating the ones that are of combinatorial nature.

Lemma 1 For any x ∈ X we have a1(x) ≡ 2a0(x) mod 5, a1(x) ≡ a0(x)+2 mod 3, and
a1(x) ≡ 7a0(x) + 5 mod 15. Also, if x, y ∈ X are such that 〈x〉 and 〈y〉 are conjugate
subgroups of X, then ai(x) = ai(y), i = 0, 1, 2.

Let B = (bi,j) be the adjacency matrix of the equitable partition formed by the orbits
of X; we call B the adjacency matrix of X. Any parameter related to B (such as trace,
eigenvalues, etc.) will be related to X as well (and we will speak of a trace of X, eigenvalues
of X, etc.). If Oi is the i-th orbit of X, we will call bi,i the trace of Oi. In general, we define
the trace of a set of vertices S of Γ to be the average degree of the subgraph of Γ induced
by S. Observe that if Xi is the vertex stabilizer of an element o ∈ Oi under X such that
Fix(Xi) ∩Oj = ∅ for some j 6= i, then |Xi| divides bij.

A selection of important observations in this connection include:

Lemma 2 Let X have k orbits on Γ. Then Tr(X) ≡ −8(k − 10) mod 15. Further, for
any orbit O of X and any v ∈ V we have Tr(O) = |{x ∈ X; v ∼ vx}||O|/|X|. Finally,
|X|Tr(X) = |{(x, v) ∈ X × Γ; v ∼ vx}| =

∑
x∈X a1(x).

An element x ∈ X is said to contribute to an orbit O of X if v ∼ vx for some v ∈ O.

Lemma 3 An element x ∈ X contributes to O if and only if x−1 contributes to O. Further,
if |X| is odd then Tr(X) is even, if x is central in X then Tr(O) ≤ 2, and for any orbit O
of X we have Tr(O)2 < |O|.

We also use a consequence of Mohar’s lemma [8].

Lemma 4 For any S ⊆ V (Γ) we have −8 + |S|/50 ≤ Tr(S) ≤ 7 + |S|/65. Consequently,
for any x ∈ X we have a1(x) ≤ 500.

Besides spectral ingredients we also use structural information about subgraphs of Γ
fixed by X to derive information about X, as initiated in [1] and extended in [7]. We omit
details in this extended abstract and state just the following:

Lemma 5 Let X be a p-group, p > 5. Then Fix(X) = ∅ and X ∼= Z13, or Fix(X) is a
single vertex and X ∼= Z19, or Fix(X) is a pentagon and X ∼= Z11, or Fix(X) is a star on
2 + 7l vertices and X ∼= Z7, or else Fix(X) is an edge and X ∼= Z7 × Z7.
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A cornerstone for our investigation is a stronger version of Theorem 1 which we present
next.

Proposition 1 Let X be an automorphism group of a Moore (57, 2)-graph Γ and let χ0,
χ1, and χ2 be as defined in Theorem 1. Let x1, x2, . . . , xu be representatives of equiva-
lence classes of the equivalence ∼ defined by x ∼ y if and only if 〈x〉 and 〈y〉 are con-
jugate subgroups of X. Let R1, R2, . . . , Ru be irreducible Q-modules of X with characters
r1, r2, . . . , ru. Then the system of linear equation with the matrix

r1(x1) r2(x1) . . . ru(x1) | χi(x1)
r1(x2) r2(x2) . . . ru(x2) | χi(x2)

...
...

...
... | ...

r1(xu) r2(xu) . . . ru(xu) | χi(xu)


has a solution in Nu

0 for any i ∈ {0, 1, 2}.

With the help of all the stated results and some ad-hoc arguments we have determined,
for example,

• the feasible groups X acting semiregularly on V (Γ)\Fix(X), including their possible
values of traces,

• all possible values of a1(x) and χ1(x) for an element x of odd prime order, and

• all feasible values of a1(x), a1(x
p) and Tr(x) for an element x of order pq for any odd

primes p ≤ q.

3 The strategy

A coarse overview of our strategy of deriving information about groups acting on Γ is as
follows:

• Take a group X which one wants to test against possible containment in G.

• Choose the (assumed) values of a0(x) = |Fix(x)| that satisfy arithmetic conditions
imposed by the information about fixed subgraphs. (An example of such a situation
is the fact proved in the ’structural information’ part that if Z25 fixes a pentagon, then
each element of order 5 must fix a subgraph isomorphic to the Hoffman-Singleton
graph.)

• With the help of Lemma 1, determine the possible values of a1(x).

• Exclude the possibilities that contradict some restriction proved in the ’ingredients’
part – this may apply to individual values of a1(x) as well as to Tr(X) =

∑
a1(x)/|X|.
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• If no possibility survives then X with the chosen values of a0(x) cannot occur. In the
remaining cases we usually end up at least with better estimates of the trace than
the one from Lemma 2.

The middle step (application of Lemma 1), however, does not make the full advantage
of spectral theory. Namely, on the basis of Proposition 1, the values of a0(x) allow to
determine orbits of X together with vertex stabilizers. We may therefore replace this step
by the following:

• Determine all the Q-irreducible X-invariant subspaces on the linear space [Γ] over Q
whose basis is the vertex set of Γ, and for each assignment of these subspaces to the
eigenvalues evaluate the corresponding values of a1(x).

4 Main results

In this section we list a selection of our results for individual candidates for the subgroup
X of G. Some of the facts below are quite hard to prove and in a number of cases we have
used the GAP software to determine information about X. The analysis usually yielded a
wealth of structural information about orbits and stabilizers which we do not include here.

• If X is a 3-group, then |X| ≤ 27.

• If X is a 5-group, then |X| ≤ 125. This is a hard result and involves a large number
of intermediate steps based on a fine analysis of possible orbit sizes and their traces.
By-products of the analysis furnish observations such as: If Fix(X) is a Hoffman-
Singleton graph, then |X| ≤ 5.

• If X is a Hall {2, 3, 5}′ subgroup of G, then |X| ∈ {1, 7, 11, 13, 19, 49}.

• If X is a {3, 5}-group and if P and Q are its Sylow 3- and 5-subgroups, then Q is
normal in X; if P is not normal in X then |P | = 3 and Q ∈ {Z2

5, Z3
5, Z2

5 · Z5}.

• If X is a {3, 7}-group, then |X| divides 3 · 49.

• If X is a {5, 13}-group but not a 5-group, then |X| = 13.

Combined with a number of other results targeting {p, q}-groups, nilpotent groups, and
others we finally obtain:

Theorem 2 Let G be the automorphism group of a Moore (57, 2)-graph of odd order. Then
|G| ∈ {1, 3, 5, 7, 11, 13, 15, 19, 21, 25, 27, 35, 39, 45, 55, 57, 75, 125, 135, 147, 171, 275, 375}.

In conjunction with refinements of results of [7] this gives:

Theorem 3 Let G be the automorphism group of a Moore (57, 2) graph of even order.
Then |G| ∈ {2, 6, 10, 14, 18, 22, 38, 50, 54, 110}.
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5 Illustration of methods

We present here three illustrative examples of our methods with sketches of proofs.

Lemma 6 If |X| = 3, then |Fix(X)| = 10.

Proof. An element of order 3 cannot contribute to any orbit. Therefore Tr(X) = 0.
However if |Fix(X)| = 1 then X has 1084 orbits and by Lemma 2 we have Tr(X) > 0. 2

Lemma 7 If X is a {5, 13}-group but not a 5-group, then |X| = 13.

Proof. From the results on the possible orders of 5-groups and 13-groups in G it follows
that X is nilpotent, with the 13-group being cyclic of order 13. If |X| > 13, then X contains
a subgroup of order 65. With the help of Proposition 1 applied to an element x of order
65 one can show that a1(x) = 65, a1(x

5) = 65, and a1(x
13) = 650. However, the last value

contradicts Lemma 4. 2

Proposition 2 Let X be a 5-group. If Fix(X) is a Hoffman-Singleton graph, then |X| ≤ 5.

Proof. Assume that |X| = 25. Since X acts semiregularly on Γ \ Fix(X) we have 50
orbits of size 1 and 128 orbits of size 25. In the neighborhood of any fixed point of X there
are exactly two orbits of size 25, both with trace equal to 0. As X is abelian of odd order,
each of the remaining 28 orbits of size 25 has trace equal to 0 or 2. Therefore the trace
of X is at most 56. Moreover, Tr(X) is even and congruent to −8 · 168 ≡ 6 mod 15. It
follows that at least one of these 28 orbits has trace equal to 0.

Let us order the orbits of X in such a way that O1, . . . , O50 are fixed points of X, O50+i

and O100+i lie in the neighborhood of Oi (i = 1, 2, . . . , 50), and Tr(O178) = 0. Let B = (bi,j)
be the adjacency matrix of X. Because Γ is a Moore graph, b178,50+i + b178,100+i = 1 for
every i = 1, 2, . . . , 50. Therefore

177∑
i=151

b178,i = 7 and
177∑

i=151

b2
178,i = 31 .

This is, however, not possible. 2

6 Conclusion

We have obtained a number of new results on the possible order and structure of the
automorphism group of the Moore (57, 2)-graph(s). If this automorphism group has odd
order, our results are completely new, and in the case of even order we have improved the
earlier results of Makhnev and Paduchikh.

An interesting phenomenon has occured in the investigation of in the possible actions
of the elementary abelian group of order 125 with the smallest orbit of size 25. It turns
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out that in this case, important parameters of this action such as stabilizers of orbits of
size 25 and values of the function a1 allow for an easy and convenient description in the
language of projective geometry. Moreover, this description is, in a way, unique up to the
action of the respective projective group. For optimists this may be considered to be an
argument pointing at a possible existence of a Moore (57, 2)-graph.

Full details including proof can be found in [6].
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Extended abstract

The k-restricted edge-connectivity of a product of graphs

X. Marcote∗
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1 Introduction

Extending a given interconnection system to a larger and fault-tolerant one so that the
communication delay among nodes of the new network is small enough is a usual objective
in network design. Within the frame of Graph Theory, one interesting model for this kind
of extension consists of considering a number of copies of a given graph G, connecting these
copies somehow in such a way that the requirements of large connectivity and small diameter
are satisfied. Such larger graphs were introduced by Bermond et al. [5]: the product graph
Gm ∗Gp of two given graphs Gm, Gp can be viewed as formed by |V (Gm)| disjoint copies of
Gp, each edge xy ∈ E(Gm) indicating that some perfect matching between the copies Gx

p ,
Gy

p (respectively generated by the vertices x and y of Gm) is placed. Observe that, in fact,
the symbol Gm ∗ Gp gathers together a number of non-isomorphic graphs, each of which is
determined by a different set of |E(Gm)| perfect matchings between pairs of copies of Gp.
Moreover, product graphs Gm ∗ Gp can be regarded as generalizations of two well-known
families of graphs. On the one hand, cartesian product graphs Gm¤Gp can be still written as
Gm ∗Gp when each edge of the |E(Gm)| perfect matchings connects two copies of the same
vertex of Gp. On the other hand, if Gm ' K2 then Gm ∗ Gp results in a permutation graph
(Gp)π —as introduced by Chartrand and Harary in [7]. Among a large number of references on
cartesian product graphs or permutation graphs we can outline some particularly interesting
papers, as for example [4, 8, 12, 14, 17, 18, 19, 20], where the study of the connectivity of
these graphs has been addressed.

This work approaches the connectedness of product graphs Gm ∗Gp by means of studying
∗This research was supported by the Ministry of Science and Innovation, Spain, and the European Regional

Development Fund (ERDF) under project MTM2008-06620-C03-02/MTM; also by Catalonian government
under project 2009 SGR 1298.
E-mail address: francisco.javier.marcote@upc.edu
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the k-restricted edge-connectivity of these graphs. Given a connected graph G and an integer
k such that 1 ≤ k ≤ b|V (G)|/2c, a k-restricted edge-cut of G is a set W ⊂ E(G) such
that G − W is not connected and all the components of G − W have at least k vertices.
Observe that such a k-restricted edge-cut may not exist; for example, a star on at least four
vertices has not 2-restricted edge-cuts. Otherwise, when k-restricted edge-cuts exist in a
graph G, then it is said to be λ(k)-connected. In this case, the minimum cardinality of a
k-restricted edge-cut of G is denoted by λ(k)(G), and called the k-restricted edge-connectivity
of G (these concepts were introduced by Fàbrega and Fiol [10, 11], even though in a slightly
different way). Notice that λ(1)(G) = λ(G) corresponds to the (standard) edge-connectivity
of G, and λ(2)(G) = λ′(G) is known as the restricted edge-connectivity of G, introduced by
Esfahanian and Hakimi in [9]. Observe also that λ(i)(G) ≤ λ(j)(G) whenever i < j. Apart
from the existence of λ(k)(G), one important question to be considered concerns its upper
bounding. In this regard, a theorem due to Zhang and Yuan ([22]) is specially useful, as
it gives a condition for λ(k)(G) to exist and to be upper bounded by ξ(k)(G), the so-called
k-edge degree of G. The k-edge degree of a graph G is defined as the minimum cardinality
of ωG(B) (set of edges with one endvertex in B and the other one not in B) among all the
sets B ⊂ V (G) on k vertices that induce a connected subgraph of G; ξ(1)(G) = δ(G) is
the minimum degree of G, and ξ(2)(G) = ξ(G) is known as the minimum edge-degree of G.
For other interesting results on the k-restricted edge-connectivity of graphs see for example
[1, 2, 3, 4, 6, 13, 15, 16, 21].

In what follows we give some conditions on Gm and Gp that ensure that Gm ∗ Gp is
λ(k)-connected for k ≥ 3, and present bounds for λ(k)(Gm ∗Gp). Going one step further, we
give sufficient conditions to guarantee the optimal result λ(k)(Gm ∗Gp) = ξ(k)(Gm ∗Gp). As
one of the objectives of this work is to generalize or extend somehow some previous results
obtained in [1, 15] by the author et al. (for product graphs when k = 2, and for permutation
graphs with 2 ≤ k ≤ 5), we will compare these known results with the main theorem of this
work. The following theorem brings together those known results.

Theorem 1 Let Gm and Gp be two connected graphs. The following statements hold.

[1] If Gp 6= K3 and δ(Gp) ≥ ∆(Gm) + 1 ≥ 2, then the product graph G = Gm ∗ Gp is
λ(2)-connected, and

min{λ(Gm)|V (Gp)|, (δ(Gm) + 1)λ(2)(Gp), δ(Gm)(δ(Gp) + 1) + λ(2)(Gp), ξ(2)(G)} ≤
≤ λ(2)(G) ≤ ξ(2)(G).

[15] If 2 ≤ k ≤ 5, Gp is λ(k)-connected, and δ(Gp) ≥ k, then the permutation graph
G = (Gp)π is λ(k)-connected, and

min{|V (Gp), 2λ(2)(Gp), δ(Gp)− k + 3 + λ(k)(Gp), ξ(k)(G)} ≤ λ(k)(G) ≤ ξ(k)(G).
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2 The results

The following theorem constitutes the main result of this work.

Theorem 2 Let Gm and Gp be two connected graphs. Let k ≥ 3 be an integer, and assume
that Gp is λ(k)-connected. If δ(Gm) ≥ k and δ(Gp) ≥ ∆(Gm) + k − 1, then the graph
G = Gm ∗Gp is λ(k)-connected and

min{λ(Gm)|V (Gp)|, (δ(Gm)− k + 3)λ(k)(Gp), δ(Gm)(δ(Gp)− k + 3) + λ(k)(Gp), ξ(k)(G)} ≤
≤ λ(k)(G) ≤ ξ(k)(G).

Let us compare Theorem 2 with the known results of Theorem 1. The bounds for λ(k)(Gm∗
Gp) obtained in [1] (first item of Theorem 1) coincide with those in Theorem 2 after taking
k = 2 —even though Theorem 2 only holds for k ≥ 3. The only difference in this case is that
Gp 6= K3 was required in [1], because otherwise λ(2)(Gp) does not exist; to prevent from this
problem when k ≥ 3, the existence of λ(k)(Gp) is explicitly imposed in Theorem 2. Hence,
we can say that the extension from k = 2 to k ≥ 3 in the bounds for λ(k)(Gm ∗Gp) has been
achieved successfully in a very natural way. The comparison of Theorem 2 with the result
obtained in [15] for permutation graphs (second item of Theorem 1) is not so straightforward.
Recall that a permutation graph (Gp)π can be seen as a product graph Gm∗Gp with Gm ' K2

(hence λ(Gm) = δ(Gm) = ∆(Gm) = 1). We must first accept that the result in Theorem 1
cannot be deduced as a particular case of Theorem 2 for k ≥ 3, because δ(Gm) ≥ k (hence
δ(Gm) 6= 1 when k ≥ 3) is a condition of Theorem 2; moreover, Theorem 2 is written for
all k ≥ 3, whereas Theorem 1 holds for k = 2, 3, 4, 5. Nevertheless, if we only consider the
expressions for the bounds of the k-restricted edge-connectivity in both theorems, it turns
out that all except one of the contributions to the lower bound of λ(k)(Gπ

p ) in Theorem 1
are particular cases of the contributions in Theorem 2; the term 2λ(k)(Gp) can be obtained
from Theorem 2 only if k = 2, yielding this theorem a poorer bound for k = 3, 4, 5 than the
bound in Theorem 1. Clearly then, an open problem to be approached in the future is to
relax the conditions of Theorem 2 with the aim of getting it closer to Theorem 1 in the case
of permutation graphs.

The following results states, roughly speaking, that if λ(k)(Gp) gets its optimal value
ξ(k)(Gp), then this optimality is inherited by Gm ∗ Gp provided that the number of vertices
of Gp is large enough.

Corollary 3 Let k ≥ 3 be an integer, and Gm and Gp be two connected graphs such that
δ(Gm) ≥ k, δ(Gp) ≥ ∆(Gm) + k − 1, and |V (Gp)| ≥ k(∆(Gp) + δ(Gp)− k − 1) + 2. Assume
that Gp is λ(k)-optimal, that is, λ(k)-connected with λ(k)(Gp) = ξ(k)(Gp). Then the graph
Gm ∗Gp is also λ(k)-optimal, that is, λ(k)(Gm ∗Gp) = ξ(k)(Gm ∗Gp).

With the following result we still guarantee λ(k)(Gm ∗ Gp) = ξ(k)(Gm ∗Gp) even though
Gp needs not be λ(k)-optimal. To achieve such a goal, some additional constraint on the
maximum degree of Gm is required.
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Corollary 4 Let k ≥ 3 be an integer, and Gm and Gp be two connected graphs such that
δ(Gm) ≥ k, ∆(Gm) ≤ (δ(Gm) − 2)(δ(Gm) − k + 3) − δ(Gm), δ(Gp) ≥ ∆(Gm) + k − 1, and
|V (Gp)| ≥ k(∆(Gp) + δ(Gp) − k − 1) + 2. Assume that λ(k)(Gp) ≥ ξ(k)(Gp) − k(∆(Gm) −
δ(Gm) + 2). Then the graph Gm ∗Gp is λ(k)-optimal.

Note that if δ(Gm) = k, Corollary 4 only makes sense if k ≥ 6 since otherwise the upper
bound on ∆(Gm) is smaller than δ(Gm).
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Abstract

The extremal number, ex(n; t) = ex(n; {C3, C4, . . . , Ct}), is the maximum number of

edges in a graph of order n that contains no cycle Ck such that k ≤ t. The set of

such graphs is called the extremal {C3, C4, . . . , Ct}-free graphs (or just extremal graphs),

denoted EX(n; t) = EX(n; {C3, C4, . . . , Ct}), where t ≥ 3. We use the notation exl(n; t)

and exu(n; t) to indicate lower and upper bounds of ex(n; t) when the exact value is not

yet known.

The problem of determining the extremal number for t > 4 has recently received much

attention. The authors of [5], used hybrid simulated annealing and genetic algorithm

to produce constructive lower bounds on the function ex(n; t) for t ∈ {5, 6, 7}. Abajo

and Diánez [2] proved many of the lower bounds published in [5] to be exact as well as

establishing some new upper and lower bounds on the extremal number for t ∈ {5, 6, 7}.
Further results for t = 6 were recently given by Delorme et al. [3] who established the

extremal numbers, ex(n; 6) for n = 29, 30 and 31, which are 45, 47 and 49, respectively.

Recent work by Abajo and Diánez [1] established the exact values of the extremal number

for t ≥ 4 and n ≤ b(16t− 15)/5c. Let k ≥ 0 be an integer. For each t ≥ 2 log2 (k+2), there

exists n such that every extremal graph G with m−n = k has minimum degree at most 2,

and is obtained by adding vertices of degree 1 and/or subdividing a graph or a multigraph

∗This research was supported by a Marie Curie International Incoming Fellowship within the 7th European

Community Framework Programme
†Email: Kim.Marshall@uon.edu.au, {mirka.miller, joe.ryan}@newcastle.edu.au
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H with δ(H) ≥ 3 and |E(H)| − |V (H)| = k. In [1], Abajo and Diánez determined the

extremal number ex(n; t) for n ≤ b (16t−15)
5 c for all t ≥ 4. To our knowledge, these are

currently the only published known values for t ∈ {9, 10}. The exact value of ex(n; 8),

for n ∈ {23, 24, 25}, and constructive lower bounds for n ≤ 69 are given in [4].

In this paper we find new lower bounds on the maximum size of graphs with prescribed

order n and girth g > t, for t ∈ {8, 9, 10} and n ≤ 200. We use these new bounds

and some new constructions to establish the maximum size of the graphs with order;

n ∈ {23, 24, 25, 26} and t = 8; n ∈ {26, 27, 28, 29} and t = 9; and n = 30 and t = 10.

Furthermore, we describe some constructions that produce infinite families of graphs of

maximum size, under girth and order restraints.

The task of obtaining new upper and lower bounds and exact values for the extremal

number is repetitive and arduous. Such tasks are best done by computer. To this end we

have written a computer program that produces improved lower bounds. The program

takes a dense graph with girth g > t as a seed and grows dense graphs with higher

order. The graphs that we used as seeds are the cycles, cages, the Petersen graph, the

Hoffman-Singleton graph, and the graphs obtained in [1].

The new results are displayed in Tables 1, 2 and 3. The new values are shown in italics,

exact values are in bold text. If two values are present these are the improved lower and

upper bounds. For n ≥ 70 we have only listed the lower bound but the upper bound

can be easily calculated to be exu(n+ 1; 9) ≤ exu(n; 9) + 3. This is due to the minimum

degree being less than or equal to 3 when n is between 62 and 242.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 9

10 10 11 12 14 15 16 18 19 21 22

20 23 25 27 28 29 30 32 33-34 35-36 36-38

30 38-40 39-42 41-44 43-46 44-48 46-50 47-52 49-54 51-56 52-58

40 54-60 55-62 57-64 59-66 60-68 62-70 64-73 66-76 68-79 69-82

50 71 72 74 76 78 80 82 84 87 88

60 90 91 93 95 97 99 100 102 103 105

70 107 108 110 112 114 115 117 118 120 122

80 124 125 127 129 131 133 134 136 138 140

90 141 143 145 147 149 151 153 155 157 159

100 161 163 164 166 168 170 172 173 175 177

110 179 181 183 185 187 188 190 192 194 196

120 198 200 202 204 206 208 210 212 213 215

130 217 219 221 223 225 227 229 231 233 235

140 237 239 241 243 245 247 249 251 253 255

150 257 259 261 263 265 267 269 272 274 275

160 277 279 281 283 285 287 289 291 293 295

170 297 299 301 303 305 307 309 311 313 315

180 317 319 321 323 325 327 329 331 333 335

190 337 339 341 343 345 347 349 351 353 355

200 357

Table 1: New results for ex(n; 8), n ≤ 26; and exl(n; 8), n ≤ 200.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

10 10 11 12 13 15 16 17 18 20 21

20 23 24 25 27 28 30 31 32 34 36

30 37-38 38-40 40-42 42-44 43-46 44-48 46-50 48-52 49-54 50-56

40 52-58 54-60 55-62 57-64 59-66 60-68 61-70 63-72 64-74 66-76

50 68-78 70-80 71-82 72-83 74-84 76-85 78-86 79-87 81-88 83-89

60 85-90 86-91 88-92 90-93 92-96 94-99 96-102 98-105 100-108 102-111

70 105 106 107 109 110 112 114 115 116 118

80 120 121 123 124 126 128 129 131 133 134

90 136 138 139 141 143 144 146 148 149 151

100 152 154 156 158 159 161 163 165 167 168

110 170 172 174 176 178 179 181 183 185 186

120 188 189 191 193 195 196 198 200 202 203

130 205 207 208 210 212 214 216 218 220 222

140 224 226 228 230 232 234 235 237 239 241

150 243 246 247 248 249 250 252 254 256 258

160 259 261 263 265 267 269 271 273 275 277

170 279 281 283 285 287 289 291 293 295 297

180 299 301 303 305 307 308 310 312 314 316

190 318 320 322 324 326 328 330 332 334 336

200 338

Table 2: New results for ex(n; 9) and exl(n; 9), n ≤ 200.
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n 0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4 5 6 7 8

10 9 11 12 13 14 15 17 18 19 20

20 22 23 24 26 27 28 30 31 33 34

30 35 36 38 39 41 42 43 44 46 47

40 48 50 51 52 54 55 56 58 59 61

50 62 64 65 67 68 70 71 73 74 75

60 77 79 80 82 83 85 86 87 89 90

70 91 93 94 96 97 99 100 102 103 105

80 106 108 109 111 113 115 117 119 121 123

90 125 127 129 130 132 134 136 138 140 142

100 144 146 147 149 151 153 155 157 159 161

110 163 165 168 169 171 172 174 175 177 178

120 180 181 183 184 186 188 189 190 192 193

130 195 196 198 199 201 202 204 205 207 208

140 210 211 213 214 216 217 219 220 222 223

150 225 226 228 229 231 232 234 236 238 239

160 240 242 244 245 247 248 250 251 253 255

170 256 258 259 261 262 264 266 267 269 270

180 272 273 275 276 278 279 281 282 284 285

190 287 289 291 292 294 295 297 298 300 302

200 303

Table 3: New results for ex(n; 10), n ≤ 200.
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COVERING GRAPHS WITH MATCHINGS OF FIXED SIZE
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1 Introduction

Let m be a positive integer and let G be a graph. An [m]-covering of G is a set

M = {M1, . . . ,Mk} of matchings (1-regular subgraphs) of G, each of size m,

such that ∪k
i=1Mi = E(G), where E(G) denotes the edge-set of G. We will say

a graph [m]-coverable if G admits an [m]-covering. An [m]-covering of smallest

order will be called excessive [m]-factorization of G and the order of any ex-

cessive [m]-factorization of G will be denoted by χ′
[m](G) and called excessive

[m]-index. We set χ′
[m](G) = ∞ if G is not [m]-coverable.

In Section 2 we show that the excessive [m]-index is strictly related to out-

standing conjectures of Berge, Fulkerson and Seymour and we propose a new

conjecture of the same type. In Section 3 we summarize the results obtained

for the case in which m is small.

2 Matchings of large size

An outstanding conjecture of Berge and Fulkerson is usually states as follows:

for each bridgeless cubic graph G there exist six perfect matchings of G with

the property that each edge of G is contained in exactly two of them. It is

straightforward that the Berge-Fulkerson conjecture implies the existence of

five perfect matchings covering the edge-set of G; it is sufficient to select five

of the six perfect matchings. I have recently proved in [7] that an equivalent

formulation of the Berge-Fulkerson conjecture is the following:

Conjecture 1 Let G be a bridgeless cubic graph of order 2n. Then, χ′
[n](G) ≤

5.

Having in mind this result, we have considered in [1] the case in which G is

cubic of order 2n and m = n− 1, in other words we consider matchings of size

one less than a perfect matching. We propose the following conjecture:

Conjecture 2 Let G be a bridgeless cubic graph of order 2n. Then, χ′
[n−1](G) =

4.

There are some large classes of cubic graphs for which the conjecture is verified to

be true: among the others we recall 3-edge-colorable graphs, almost Hamiltonian

graphs and graphs having oddness 2 or 4.

Furthermore, we are able to construct an infinite family of 1-connected cubic

graphs for which the excessive [n− 1]-index is large as we want.

In the case of r-regular graphs G of order 2n and r > 3, the excessive [n]-
index cannot be bounded by any constant as proved in [8]. Seymour conjectures
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in [10] that the “right“ condition to put on is about the edge-boundary of odd-

sized subsets of the vertex-set. He defines an r-graph as an r-regular graph such

that every odd-sized subset of the vertex-set has edge-boundary at least r and

for this relevant class of graphs proposes a generalization of the Berge-Fulkerson

conjecture. I prove in [9] that also in this case the conjecture can be stated in

terms of the excessive [n]-index of G as follows:

Conjecture 3 Let G be an r-graph of order 2n. Then, χ′
[n](G) ≤ 2r − 1.

I also exhibit a class of r-graphs for which the bound 2r − 1 is reached.

3 Matching of small size

If m is a small integer the more ambitious task of finding a general formula

to compute χ′
[m](G) can be considered. Obviously χ′

[1](G) = |E(G)| and it is

easy to prove that χ′
[2](G) = max{χ′

(G), d|E(G)|/2e} where χ′
(G) denotes the

chromatic index of G. The case m = 3 is completely solved by Cariolaro and Fu

in [2]. We need the following definition to state their result: a set S of edges is

a splitting set if no two edges in S belong to the same [m]-matching of G. We

denote by s(G) the maximum cardinality of a splitting set of G.

Theorem 1 Let G be a [3]-coverable graph. Then

χ′
[3](G) = max{χ′

(G), d|E(G)|/3e, s(G)}

The next step is m = 4. In a joint work with Cariolaro we are able to prove

a complete result for trees in this case:

Theorem 2 Let T be a [4]-coverable tree. Then

χ′
[4](T ) = max{χ′

(T ), d|E(T )|/4e, s(T )}

In the same work, we give a generalization of the concept of splitting set. We

call a set S of edges a t-splitting set if no t edges in S belong to the same [m]-

matching of G. We denote by st(G) the maximum cardinality of a t-splitting
set of G and we set S(G) = maxt st(G).

Using this more general concept we wonder if the excessive [4]-index of all [4]-

coverable graphs can be computed in the following way:

χ′
[4](G) = max{χ′

(4), d|E(G)|/4e, S(G)}

.
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Abstract

The degree/diameter problem is to determine the largest (in terms of the number of vertices)
graphs of given maximum degree and given diameter. General upper bounds, called Moore
bounds, exist for the largest possible order of such graphs, digraphs and mixed graphs of
given maximum degree ∆ and diameter D.

The Moore bound for an undirected graph of degree ∆ and diameter D is

M∆,D = 1 + ∆ + ∆(∆− 1) + · · ·+ ∆(∆− 1)D−1

A graph that attains the Moore bound is called a Moore graph. Moore graphs exist; they
are all the complete graphs and odd length cycles plus two or possibly three special graphs
when D = 2 and ∆ = 3, 7, and possibly 57.

Almost Moore graphs are graphs of degree ∆ and diameter D with M∆,D − 1 vertices; such
graphs are also called graphs of defect 1. The only almost Moore graphs are the even length
cycles.

Almost almost Moore graphs, or graphs of defect 2, are graphs of degree ∆ and diameter D
with M∆,D−2 vertices. Such graphs have not been categorised yet. Currently there are only
five known graphs of defect 2. One of these is the Mobius ladder which has the distinction
of being a ”graph with cyclic defect”.

In a graph G of defect 2, any vertex v can reach within D steps either two vertices (called
repeats of v) in two different ways each, or one vertex (called double repeat of v) in three
different ways; all the other vertices of G are reached from v in at most D steps in exactly
one way.

The repeat (multi)graph of G, R(G), consists of the vertex set V (G) and there is an edge
{u, v} in R(G) if and only if v is a repeat of u (and vice versa) in G. Clearly, when defect is
2, R(G) is either one cycle of length n = |V (G)| or a disjoint union of cycles whose sum of
lengths is equal to n.

If R(G) is cycle of length n then we say that G has cyclic defect. Graphs with cyclic defect
were first studied by Fajtlowicz [2] who proved that when D = 2 the only graph with cyclic
defect is the Mobius ladder on eight vertices (with ∆ = 3). Subsequently, for D ≥ 3, Delorme
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and Pineda-Villavicencio [1] proposed several ingenious algebraic techniques for dealing with
graphs with cyclic defect and they proved the nonexistence of such graphs for many values
of D and ∆. They conjectured that graphs with cyclic defect do not exist for D ≥ 3.

In this talk we show how structural properties of graphs with cyclic defect can be used to
prove that this conjecture holds in general.
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Universitat Politècnica de Catalunya

Barcelona, Spain
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Abstract

We analyze when the Moore–Penrose inverse of the combinatorial Laplacian of

a graph is an M–matrix; that is, it has non–positive off–diagonal elements or,

equivalently when the Moore–Penrose inverse of the combinatorial Laplacian of a

graph is also the combinatorial Laplacian of another network. When this occurs we

say that the graph has the M–property. We prove that only distance–regular graphs

with diameter up to three can have theM–property and we give a characterization of

the graphs that satisfy the M–property in terms of their intersection array of those

distance–regular graphs that satisfy the M–property. In addition, we conjecture

that no primitive distance–regular graph with diameter three has the M–property.

Keywords: Distance–regular graphs, Moore–Penrose inverse, strongly regular

graph, partial geometry, pseudo geometric graph.
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1 Statement of the Problem

Problems in biological, physical and social sciences can very often be reduced

to problems involving matrices which have some special structure. One of the

most common situation is when the matrix has non–positive off–diagonal and

non–negative diagonal entries; that is L = kI−A, k > 0 and A ≥ 0, where the

diagonal entries of A are less than or equal to k. If k is at least the spectral

radius of A, then L is called an M–matrix. In the graph theory framework L
is the combinatorial Laplacian of a k–regular graph, where A is its adjacency

matrix.

Although it is well-known that L has a generalized inverse which is non–

negative, this is not always true for any generalized inverse. In particular, it

may happen that the Moore–Penrose inverse, L†
, has some negative entries.

For instance, this happens for the Moore-Penrose inverse of the combinatorial

Laplacian of Petersen’s graph.

The combinatorial Laplacian, L, is a symmetric positive semi–definite ma-

trix that has 0 as its lowest eigenvalue and whose associated eigenvectors are

constant. In consequence, L† is an M–matrix iff L†ij ≤ 0 for any xi, xj ∈ V
with i ̸= j.

We will say that a graph Γ has the M–property iff L† is an M–matrix.

2 Distance–regular graphs with the M–property

Throughout this section we consider a distance–regular Γ with intersection

array

ι(Γ) =
{
b0, b1, . . . , bD−1; c1, . . . , cD

}
.

In addition, ai = k − ci − bi is the number of neighbours of xj in Γi(xk), for

d(xk, xj) = i. Usually, the parameters a1 and c2 are denoted by λ and µ,
respectively. For all the properties related with distance–regular graphs we

refer the reader to [4].

Some well-known examples of distance–regular graphs are the n–cycle, Cn,

with diameter D =
⌊
n
2

⌋
, intersection array ι(Cn) =

{
2, 1, . . . , 1; 1, . . . , 1, cD

}
,

where cD = 1 when n is odd and cD = 2 when D is even, see [4].

On the other hand, Γ is bipartite iff ai = 0, i = 1, . . . , D, whereas Γ is

antipodal iff bi = cD−i, i = 0, . . . , D, i ̸=
⌊
D
2

⌋
and then b⌊D

2 ⌋ = kDc⌈D
2 ⌉ and Γ

is an antipodal (kD+1)–cover of its folded graph, see [4, Prop. 4.2.2]. Observe

that Cn is antipodal iff n is even. Distance–regular graphs other than bipartite

or antipodal are primitives.



The following lemma shows that for distance–regular graph L† can be ex-

pressed in terms of its intersection array, see [1, Prop. 4.1].

Lemma 2.1 Let Γ be a distance–regular graph. Then, for all i, j = 1, . . . , n

L†ij =
D−1∑

r=d(xi,xj)

1

nkrbr

( D∑
l=r+1

kl

)
−

D−1∑
r=0

1

n2krbr

( r∑
l=0

kl

)( D∑
l=r+1

kl

)
.

The next result follows from the previous Lemma, the Moore–Penrose

inverse of L is a M–matrix iff L†ij ≤ 0 when d(xi, xj) = 1, since in this

case the first term in the right hand side of the expression takes the greatest

value.

Proposition 2.2 A distance–regular graph Γ has the M–property iff

D−1∑
j=1

1

kjbj

( D∑
i=j+1

ki

)2

≤ n− 1

k
.

Corollary 2.3 If Γ has the M–property and D ≥ 2, then

λ ≤ 3k − k2

n− 1
− n.

and hence n < 3k.

Inequality 3k > n turns out to be a strong restriction for a distance–regular

graph to have the M–property.

In the following result, we generalize the above observation by showing that

only distance–regular graphs with small diameter can satisfy the M–property.

Proposition 2.4 If Γ is a distance–regular graph with the M–property, then
D ≤ 3.

Proof. If D ≥ 4, then k = k1 ≤ ki, i = 2, 3 which implies that

3k < 1 + 3k ≤ 1 + k + k2 + k3 ≤ n,

and hence Γ does not have the M–property. 2

A strongly regular graph with parameters (n, k, λ, µ) is a graph on n vertices

which is regular of degree k, any two adjacent vertices have exactly λ common

neighbours and two non–adjacent vertices have exactly µ common neighbours.

A strongly regular graph is a distance–regular graph with D = 2.



Proposition 2.5 A strongly regular graph with parameters (n, k, λ, µ) has the
M–property iff

µ ≥ k − k2

n− 1
.

In particular, every antipodal strongly regular graph has the M–property.

We recall that if Γ is a primitive strongly regular graph with parameters

(n, k, λ, µ), then its complement graph is also a primitive strongly regular

graph with parameters (n, n − k − 1, n − 2 − 2k + µ, n − 2k + λ), which in

particular implies that µ ≥ 2(k + 1)− n.

Corollary 2.6 If Γ is a primitive strongly regular graph, then either Γ or Γ

has the M–property. Moreover, both of them have the M–property iff Γ is a
conference graph.

Proof. If we define k̄ = n − k − 1, λ̄ = n − 2 − 2k + µ and µ̄ = n − 2k + λ,
then

k̄ − k̄2

n− 1
= k − k2

n− 1

and hence

µ̄ ≥ k̄ − k̄2

n− 1
⇐⇒ λ ≥ 3k − k2

n− 1
− n ⇐⇒ µ ≤ k − k2

n− 1
,

where the equality in the left side holds iff the equality in the right side holds.

Moreover, any of the above inequalities is an equality iff µ̄ = µ and λ̄ = λ; that
is iff Γ is a conference graph. The remaining claims follow from Proposition

2.5. 2

If Γ is a bipartite distance–regular graph with D = 3, its intersection array

is ι(Γ) = {k, k− 1, k− µ; 1, µ, k}, where 1 ≤ µ ≤ k− 1. On the other hand, if

Γ is an antipodal distance–regular graph with D = 3, its intersection array is

ι(Γ) = {k, tµ, 1; 1, µ, k}, where µ, t ≥ 1 and tµ < k. When t = 1, these graphs

are known as Taylor graphs, T (k, µ).

Proposition 2.7 A distance–regular graph with D = 3 has the M–property
iff

k2b1

(
b2c2 + (b2 + c3)

2
)
≤ c22c

2
3(n− 1).

In particular, if Γ is bipartite, it satisfies the M–property iff
4k

5
≤ µ ≤ k − 1,

whereas if Γ is antipodal, it has the M–property iff it is a Taylor graph T (k, µ)

such that k ≥ 5 and
k + 3

2
≤ µ < k.



If Γ is a bipartite distance–regular graph with D = 3 and µ < k − 1, it

is well–known, see for instance [4], that Γ3 is also a bipartite distance–regular

graph with D = 3 and intersection array ι(Γ3) = {k3, k3 − 1, k − µ; 1, µ̄, k3},
where k3 =

(k−1)(k−µ)
µ

and µ̄ =
(k−µ−1)(k−µ)

µ
.

Corollary 2.8 If Γ is the bipartite distance–regular graph with D = 3 and
1 ≤ µ < k − 1, then either Γ or Γ3 has the M–property, except when

k − 1 < 5µ < 4k,

in which case none of them has the M–property.

If Γ is the Taylor graph T (µ, k) , it is well-known that the graph Γ2 is also the

Taylor graph T (k − 1− µ, k).

Corollary 2.9 If Γ is the Taylor graph T (k, µ) with 1 ≤ µ ≤ k − 2, then
either Γ or Γ2 has the M–property, except when µ ∈ {m− 2,m− 1,m,m+1}
when k = 2m and µ ∈ {m − 1,m,m + 1} when k = 2m + 1, in which case
none of them has the M–property.

To our knowledge there is no primitive distance–regular graphs with D = 3

satisfying the M -property.
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Abstract

The problem of finding the largest connected subgraph of a given undirected host graph,
subject to constraints on the maximum degree ∆ and the diameter D is a generalization of
the Degree/Diameter Problem.

Let G = (V,E) be an undirected graph without loops or multiple edges (called the host
graph), with n vertices (its order), and m edges (its size). Our problem is stated as follows:

Problem 1 (Maximum Degree/Diameter Bounded Subgraph, MaxDDBS). Given
a connected undirected host graph G, an upper bound ∆ for the maximum degree, and an
upper bound D for the diameter, find the largest connected subgraph S with maximum degree
≤ ∆ and diameter ≤ D.

MaxDDBS is a natural generalization of the well-known Degree/Diameter Problem (DDP),
which asks for the largest graph with given degree and diameter [3]. DDP can be seen
as MaxDDBS when G is the complete graph Kn for sufficiently large n. Problem 1 was
recently introduced in [1], where the various practical applications are discussed, and a
heuristic approximation algorithm to solve MaxDDBS is given, since it is computationally
hard.

MaxDDBS is closely related to the Degree/Diameter Problem (DDP), stated by Elspas in
1964, which consists of finding the largest graph with a given maximum degree ∆ and a
given diameter D. Since the order of such a graph cannot exceed the quantity M∆,D =
1 + ∆ + ∆(∆−1) + · · ·+ ∆(∆−1)D−1, called the Moore bound, if we take G as the complete
graph on M∆,D vertices (denoted by KM∆,D

) in Problem 1, we get the Degree/Diameter
Problem.

A graph whose order is equal to the Moore bound is called a Moore graph. Moore graphs
are very rare; they exist only for certain special values of diameter: only when ∆ = 2 or
D = 1 or 2. To be more precise, when ∆ = 2, Moore graphs are the odd cycles C2D+1 of
diameter D; for diameter D = 1, Moore graphs are the complete graphs of order ∆+1, while
for diameter D = 2, Moore graphs exist for ∆ = 2, 3, 7 and possibly 57, but not for other
degrees [3]. We denote by N∆,D the order of the largest graph that can be constructed with
maximum degree ∆ and diameter D; the current lower bounds for N∆,D are shown in [2].

∗This research was supported by a Marie Curie International Incoming Fellowship within the 7th European
Community Framework Programme
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A case of special interest is when the host graph G is a common parallel architecture, such
as the mesh, the hypercube, the butterfly, or the cube-connected cycles. If there are any
constraints on communication time between two arbitrary processors, then MaxDDBS cor-
responds to the largest subnetwork that can be allocated to perform the computation. The
case of the mesh and the hypercube as host graphs were already treated in [1], where some
bounds were found for the order of MaxDDBS in a k-dimensional mesh.

In this paper we discuss the case of the mesh as a host graph. We refine the bounds given
in [1] for the order of the largest subgraph in arbitrary k ≥ 1, and we focus on the cases
k = 3, ∆ = 4 and k = 2, ∆ = 3. For those particular cases we give constructions that result
in larger lower bounds.
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Abstract

We describe Cayley hash functions, a cryptographic construction based
on Cayley graphs. The security of this construction can be related to a
famous conjecture of Babai on the diameter of Cayley graphs.

1 Cryptographic hash functions

Cryptography allows secure and secret communications in untrusted environ-
ments. Hash functions are a very important cryptographic primitive, useful
to construct digital signatures and message authentication codes. Informally,
a hash function is a mathematic function that maps any arbitrary-long binary
message m into a hash value h of fixed length:

H : {0, 1}∗ → {0, 1}L.

The three main security requirements for a hash function are collision resistance,
second preimage resistance and preimage resistance. They can be informally
formulated as follows:

• Collision resistance: it is “hard” to find a couple of messages (m,m′) such
that H(m) = H(m′)

• Second preimage resistance: given a message m, it is “hard” to find an-
other message m′ such that H(m) = H(m′)

• Preimage resistance: given a hash value h, it is “hard” to find a message
m such that H(m) = h.

In all these informal definitions, “hard” can be given a precise computational
sense. We refer to textbooks [6] for a more complete introduction to cryptogra-
phy and hash functions.
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2 Cayley graphs, expander graphs

Let G be a finite group and let S := {s0, . . . , sk−1} ⊂ G be a set of elements of
this group. The Cayley graph GG,S is defined as follows: it has one vertex for
each element of G and there is one edge between two elements v1 and v2 if and
only if v2 = v1si for some si ∈ S.

Intuitively, an expander graph is a sparse graph with strong connectivity
properties. The formal definition requires a family of graphs {Gi, i ∈ N}. It
says that there exists a constant c such that for any i and any subset V of Gi
containing less than half of the vertices, we have

|δV |
|V |

≥ c

where δV is the set of neighbors of V . One important property of expander
graphs is that random walks quickly converge to the uniform distribution.

Expander graphs have a lot of applications in computer science and math-
ematics. There exists both theoretical and experimental evidence that Cayley
graphs are good expander graphs. We refer to the survey [5] for more on the
topic.

3 Cayley hash functions

The hash functions commonly used in practice (like the SHA family [1]) have
an ad hoc design aimed to make the the hash function look somehow like a
“random function”. In contrast, Cayley hash functions are an attempt to base
the security of hash functions on (hopefully) hard mathematical problems.

Let G be a finite group and let S := {s0, . . . , sk−1} ⊂ G be a set of elements
of this group. Suppose that the message m is decomposed into k-digits (into
bits if k = 2):

m = m1m2...mN , mi ∈ {0, . . . k − 1}.

We can define a hash function H as

H(m1m2...mN ) := sm1
· sm2

· . . . · smN
.

From an efficiency point of view, the computation of this hash function can
be parallelized easily. On the other hand, its main security properties can be
related to group-theoretical and graph-theoretical properties and problems. For
example,

• Preimage resistance corresponds to the factorization problem in the group:
given an element g ∈ G, find a factorization g = s1 · s2 · . . . · sN where
sN ∈ S.

• The expander properties ensure that the output of the hash function is
“well-distributed” (close to uniformly distributed).
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The security of the construction seems to depend on the parameters G and
S. For example, collision resistance forbids the use of Abelian groups. Some
examples of parameters proposed for this construction can be found in [9, 8, 4].

4 Cryptanalysis - the path-finding problem

Interestingly, the factorization problem in finite groups is closely related to a
well-known conjecture of Babai on the diameter of Cayley graphs [2]. In fact,
the problem can be seen as a constructive version of the conjecture. Substantial
progress has recently been made on the conjecture but the partial proofs we
have are mostly non constructive. In graph-theoretical terms, the factorization
problem amounts to finding a routing algorithm between any pair of vertices
in the Cayley graph. Some examples of parameters for which the problem can
be solved “efficiently” are given in [3] and [7]. For essentially all remaining
parameters, the problem is still widely open.
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Let G = (V,E) a simple graph. A colouring of its vertices ς : V → [k] is called complete if each
pair of different colours i, j ∈ [k] := {1, ..., k} appears in a edge; that is, if there exist e = uv ∈ E such
that

ς(e) = {ς(u), ς(v)} = {i, j}.

The pseudoachromatic number ψ(G) is the maximum k for which there exist a complete colouring
of G (cf. [8]). If the colouring is required also to be proper (i. e., that each chromatic class is
independent), then such a maximum is know as the achromatic number (cf. [9]) and it will be denoted
here by α(G). Clearly,

χ(G) ≤ α(G) ≤ ψ(G),

where χ(G) denotes, as usual, the chromatic number of G. Interesting results on these invariants can
be found in [4, 5, 7, 10].

We are mainly interested in the pseudoachromatic number ψ(n) := ψ(L(Kn)) of the complete
graph’s line graph -also know as the pseudoachromatic index of the complete graph- and its relation
with the achromatic index α(n) := α(L(Kn)).

In this talk, we expose the principal motivation of this research, a deep result due to Bouchet (cf.
[6]): Let q be and odd natural number, and let m = p2 + p+ 1. A projective plane Πp of order p exists
if and only if α(m) = pm.

Also, we expose our work made in this direction:

In a recently paper, my coauthors proved that (cf. [2]) ψ(n) = q(n+ 1) when n = q2 + 2q + 2 and
q = 2γ for γ ∈ N using also the properties of the projective planes.

1ok.rubio@gmail.com
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Now, we have shown that (cf. [1]) ψ(n− a) = α(n− a) = q(n− 2a) when n = (q + 1)2, q = 2γ for
γ ≥ 2 and a ∈ {0, 1, 2} using also projective planes.

The lower bound is obtained finding colourings that attains it; these colourings are related with
the structure of the projective planes, we recall the basic combinatorial properties of the projective
planes:

Given a prime power q, let denote as Πq the projective plane of order q. Such plane has n = q2+q+1
points and n lines; each line contains q + 1 points and each point belongs to q + 1 lines. Moreover,
two every pair of points belongs to exactly one line, and every pair of lines intersect in exactly one point.

By other side, for the upper bounds we use two simple functions as following (cf. [1, 10, 11]):

ψ(m) ≤ máx

{
mı́n{fn(x) :=

⌊
n(n− 1)

2(x+ 1)

⌋
, gn(x) := 2x(n− x− 1) + 1 : x ∈ N}

}
.

And, also, a detailed anaysis due to Jamison [11] of the two functions of above,

ψ(n) ≤
{
gn(x)
fn(x)

si n∈{4x2−x,...,4x2+3x−1}
si n∈{4x2+3x,...,4(x+1)2−(x+1)−1}
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A graph of maximum degree d ≥ 3 and diameter k ≥ 2 can have at
most M(d, k) = 1 + d + d(d − 1) + ... + d(d − 1)k−1 vertices. The Moore
bound M(d, k) is, however, known to be met by just two graphs for d and
k in the given range, namely for d = 3 and k = 2 by the Petersen graph,
and for d = 7 and k = 2 by the Hoffman-Singleton graph. For all other
values of d ≥ 3 and k ≥ 2, except, possibly, d = 57 and k = 2, we know
that the largest possible number n(d, k) of vertices of a graph of maximum
degree d and diameter k satisfies n(d, k) < M(d, k). These findings, dating
back to the sixties and early seventies of the previous century (cf. [5, 1, 2]),
have generated numerous interesting problems, all stemming from the main
question about determining, or giving at least reasonable estimates on, the
number n(d, k). Literature on this topic counts hundreds of papers and we
therefore refer to the survey article [9] for more information about the history
and the development in the degree-diameter problem.

Since the order of the Moore bound is enormous even for modest values
of d and k, it is not a surprise that attempts to construct large graphs of a
given diameter and a given maximum degree have been based on algebraic
or geometric structures. This applies also to computer hunting for such
graphs, where, in addition, the diameter checking is greatly facilitated if the
generated graphs are vertex-transitive, or at least have very few orbits of the
automorphism group. Perhaps the simplest and most natural way to meet
these requirements is to consider building large Cayley graphs of a given
degree and diameter. This is the case for both computational results (cf. [6]
and references therein; see also [13]) as well as more general constructions.
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In our presentation we will give a survey of the existing constructions of
large Cayley graphs of given degree and diameter. We will not be just revis-
iting the existing results regarding the role of Cayley graphs in the degree-
diameter problem. Rather more importantly, in the talk we will also give
an overview of he methods that have been used in what is now known as he
Cayley version of the degree-diameter problem, which is finding the largest
order of a Cayley graph of a given degree and diameter.

Although orders of the largest Cayley graph of given degree and diameter
on an Abelian group cannot come anywhere near the Moore bound, these are
interesting from the theoretical point of view and we will present details of
the current best constructions [3, 4, 7]. In general, no reason is known why
the Moore bound could not be at least asymptotically approached by Cayley
graphs of non-Abelian groups; a recent example is [11] where, for diameter 2
and an infinite set of degrees d, it is shown that the ratio of the order of the
largest Cayley graphs with these parameters and M(d, 2) = d2 + 1 tends to
1. Other available methods of construction of large Cayley graphs of given
degree and diameter [7, 8, 10, 11, 12] will be discussed in some details as
well.
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no. 0104/07 and 0223/10.
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[6] E. Loz and J. Širáň, New record graphs in the degree-diameter problem,
Australasian J. Combin. 41, (2008) 63–80.

[7] H. Macbeth, J. Šiagiová and J. Širáň, Cayley graphs of given degree and
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Automorphisms on Almost Moore Digraphs
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1 Introduction

Let G be a digraph with degree d, diameter k and order
∑k

i=1 d
i, such a graph is

called an almost Moore digraph. For all vertices v ∈ V (G) there exists exactly
one vertex r(v), the repeat of v, for which there is exactly two paths of length
at most k from v to r(v) and from v to every other vertex there is exactly one
such path. We know that r : V (G) 7→ V (G) is an automorphism, see [1]. If
v = r(v), then v is called a selfrepeat and G contains a selfrepeat if and only if
it contains a k-cycle, see [2].
The automorphism r has been studied to some extent, along with the automor-
phisms rp defined by r0(v) := v and rp(v) := r(rp−1(v)) for all natural numbers
p and v ∈ V (G). The order ω(v) of a vertex v is the smallest integer p > 0 such
that rp(v) = v.

2 Automorphisms on G

We consider more general automorphisms on almost Moore digraphs than those
mentioned above, which we expect will help us characterize further properties
of almost Moore digraphs.

For instance, by studying an automorphism ϕ which fixes at least three vertices,
we obtain the following theorem

Theorem 1. Let G be an almost Moore digraph with d ≥ 4, k ≥ 3 and no
selfrepeats. Let ϕ be an automorphism which fixes at least three vertices of G
and let u = ϕ(u). Then the vertices which are fixed by ϕ forms a cycle of length
k + 2 or N+(u) contains at least two vertices fixed by ϕ.

A theorem by Baskoro and Amrullah [3, Theorem 1] states that every vertex
of the smallest order p in an almost Moore digraph without selfrepeats and no
vertices of order 2, has at least two out-neighbours of order p. Theorem 1 above
is a more general result than that, as ϕ which fixes at least three vertices is a
more general automophism than rp with p > 2.

1

Dominique
Texte surligné



The properties characterized by the automorphisms we study might also help
us prove the existence or non-existence of certain almost Moore digraphs.
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Complete characterization of graphs with order n and

metric dimension n− 2 ∗

S.W. Saputro, R. Simanjuntak, S. Uttunggadewa,

H. Assiyatun, E.T. Baskoro, and A.N.M. Salman
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Institut Teknologi Bandung, Bandung 40132, Indonesia

Abstract

For an ordered set W = {w1, w2, · · · , wk} of vertices and a vertex v in a con-
nected graph G, the representation of v with respect to W is the ordered k-tuple
r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) where d(x, y) represents the distance be-
tween the vertices x and y. A set R is called a resolving set of G if for every vertex v of
G, its representation with respect to R is unique. A resolving set of G is called basis of
G if it has minimum cardinality among all resolving sets of G. The metric dimension
of G, dim(G), is the cardinality of a basis of G.

To date, complete characterizations of graphs with order n are known only for
dimension 1, n − 1, and n. In this presentation, we completely characterize graphs of
order n and metric dimension n− 2.

∗Partially funded by DGHE Competence Grant 2011.
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On directed (k, 4)-cage graph.
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Abstract

Let G = (V,E) be a k-regular directed graph. A girth is the minimum
length of directed cycle in G. The problem is to find the minimal
number of vertices of the directed graph G that has degree k and girth
g. The directed graph that fulfill this condition is called directed (k, g)-
cage graph. The upper bound of the number of the vertices has been
known by the k-regular directed graph of girth g, −→C

k

(g−1)k+1. In this
paper we give survey on the knowm results in this problem and prove
that the upper bound has been reach for some cases on girth 4.

Keywords: regular directed graph, girth
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N-separators in planar networks as a characterization tool
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1 Abstract

We study the N -separators in weighted (vertices, edges and faces) planar graph (an N -
separator of a connected graph G is a subgraph G whose deletion decomposes G into N
connected components). A number of papers were inspired by the original paper by Lipton
and Tarjan [6] on 2-separators in weighted (only vertices and edges) planar graphs. Their
separator construction is very important issue in many graph applications such as VLSI
modelling [7], communication networks [8], parallel computing [9]. The most complete and
recent survey on graph separators can be found in [10].

One of the possible applications of the separator method is the degree-diameter problem in
planar graphs [11]. In this case, the separator method is used for planar graph characterization
[5]. The largest graphs in the degree-diameter problem are very dense. Therefore, the simplest
Lipton and Tarjan separator (Lemma 2 of [6]) which is a cycle obtained by addition of an
edge to some edges of a spanning tree becomes an efficient tool [2] in the degree-diameter
problem. Each of two separated subsets is either the interior or the exterior of the cycle.
Further progress can be achieved in the degree-diameter problem increasing the number of
separated subsets. In general, an N -separator is needed consisting of several cycles.

We optimize the separator construction in plane graphs with weighted vertices, faces and
edges. Such generalization is important for practical applications. We consider the problem
of existence of an N -separator in a planar graph and give optimal bounds to the minimum
weight component.

We consider the degree-diameter problem restricted to planar graphs. We look for the
largest number of vertices p(∆, D) in a planar graph with maximum degree ∆ and even
diameter D = 2d. Hell and Seyffart [1] have computed p(∆, 2) = [3∆/2] + 1 and proved that
this value is exact for ∆ ≥ 8. Fellows, Hell, and Seyffarth have also found [2] rather rough
upper bounds p(∆, 2d) = (12d + 3)(2∆d + 1) for d > 1,∆ ≥ 4. To this end they have applied
the Lipton and Tarjan separator theorem [6]. Later [3], they have constructed plane graphs
proving the lower bound

p(∆, 2d) = (3∆−4)∆(∆−1)d−1−4
2(∆−2) .
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At the same time they emphasized ”that the lower bounds are likely to be closer to the
actual values of p(∆, D) and that good upper bounds likely to be difficult to establish.” They
asked as well the question: ”Let D be fixed. Is it the case that for all sufficiently large ∆
there are networks with maximum degree ∆ , diameter at most D, and p(∆, D) nodes which
are all of the same type?” We improve the constructions of Hell and Seaffart increasing in the
case ∆ ≥ 5 the lower bound:

p (∆, 2d) =

[
3∆

2

(∆ − 1)d − 1

∆ − 2

]
+ 1 (1)

We show that this bound is exact for large ∆: The proof is based on a 5-separator
construction in a plane graph. The existence of an N -separator in a plane graph with bounded
number of vertices in each face was proved recently [4].
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(2)-pancyclic graphs
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In the widely known book on graph theory (more precisely, its 1976 edition) by

J. A. Bondy and U. S. R. Murty [1] we find a series of 50 open problems, among

which problem number 10 will be the initial point of our investigations: Determine

all graphs having exactly one cycle of each length p, 3 ≤ p ≤ n, where n is the order

of the graph (such graphs are called uniquely pancyclic). [1] attributes this problem
to R. C. Entringer, who formulated it in 1973.

Constructing the four smallest uniquely pancyclic graphs (they are of order 3, 5,

8, and 8) is an easy task. In 1986, Y. Shi [4] constructed three further such graphs

(each of order 14), conjecturing that there are no other uniquely pancyclic graphs

than these seven. This problem is still widely open, and only recently K. Markström

[3] confirmed Shi’s conjecture for n ≤ 59.

In this talk we will discuss the class of (2)-pancyclic graphs, which are graphs of

order n having exactly two cycles of length p for all p fulfilling 3 ≤ p ≤ n. Very little

is known concerning these graphs. We provide examples of such graphs (most of

which were constructed by G. Exoo [2]), establish their existence or non-existence for

all orders up to 11, and provide all non-isomorphic (2)-pancyclic graphs of smallest

order.

We also give bounds on the vertex-degrees in such graphs, present a result ex-

hibiting how many cycles a given edge traverses, and prove a lower bound for the

order of non-Eulerian (2)-pancyclic graphs. Furthermore, we introduce (mimicking

previous approaches, see e.g. [5]) r-(2)-pancyclic graphs, which are graphs of order

n featuring exactly two cycles of each length p, r ≤ p ≤ n, and construct an infinite

family of such graphs with non-trivial r. Finally, we present a theorem yielding as

corollary the existence of (2)-pancyclic digraphs of every order n, n ≥ 3.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-

Holland (1976).

[2] G. Exoo. http://ginger.indstate.edu/ge/Graphs/PANCYCLIC/index.html

[3] K. Markström. A note on uniquely pancyclic graphs. Australas. J. Comb. 44
(2009) 105-110.

[4] Y. Shi. Some theorems of uniquely pancyclic graphs. Discrete Math. 59 (1986)

167-180.

[5] H. P. Yap and S. K. Teo. On uniquely r-pancyclic graphs. Lect. Notes Math.
1073 (1984) 334-335.

1

Dominique
Texte surligné



Extended abstract

A family of large vertex-transitive graphs of diameter 2
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1 Introduction

The interest in large graphs and digraphs of given degree and diameter comes from possible

applications in the design of interconnection networks. A closely related problem is the

”degree-diameter problem”, which is determining the largest graphs and digraphs of given

degree and diameter. History and development of this area of research has been summed
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Regional Development Fund (ERDF) under project MTM2008-066200-C03-02/MTM; also by Catalonian

government under project 2009 SGR 1298
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Miller), jozef.siran@stuba.sk (J. Širáň), zdimalova@math.sk (M. Žd́ımalová)
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up in the survey [10]. In what follows we focus on a special case - the large graphs of given

degree d and diameter 2.

Let n(d, 2) be the largest order of a graph of maximum degree d and diameter 2. The

upper bound n(d, 2) ≤ 1 +d+d(d−1) = d2 + 1 is known as the Moore bound for diameter

two. The equality n(d, 2) = d2 + 1 holds if and only if d = 2, 3, 7 and possibly 57, see

Hoffman and Singleton [8]. The corresponding extremal graphs are called Moore graphs.

For all the remaining degrees d we have n(d, 2) ≤ d2 − 1 by [6]. The best lower bound for

degrees of the form q+ 1 where q is a prime power comes from the Brown’s graphs [4] and

their extended version [5, 6]. The Brown’s graphs, known as polarity graphs, were also

studied in [1, 3].

From the computational point of view the most interesting are vertex transitive and

Cayley graphs, because of efficient computer generation and fast diameter checking. In this

contribution we focus only on vertex-transitive version of this problem and on diameter

2. Let vt(d, 2) be the largest order of vertex-transitive graphs of degree d and diameter

2. There is no better upper bound as in the case of n(d, 2). The equality vt(d, 2) = d2 − 1

holds for d = {2, 3, 7}, and we have vt(d, 2) ≤ d2 − 1 for all other degrees, including 57.

The current best lower bound on vt(d, 2) was obtained with the construction by McKay,

Miller and Širáň [9] and has the form vt(d, 2) ≥ 8/9(d + 1/2)2 for all d such that d =

(3q − 1)/2, where q is a prime power congruent with 1 mod 4. The corresponding graphs

have been known as the McKay-Miller-Širáň graphs; they are vertex-transitive but not

Cayley. Širáň, Šiagiová and Žd́ımalová [12] extended this bound for other degrees.

A simplified version of the McKay-Miller-Širáň graphs described by lifts was given by

Šiagiová [11]. Hafner [7] and Arraucho, Noy, Serra [2] have given an alternative geometric

description of these graphs as modified incidence graph of an affine plane.

2 The result

Let q = pn be a power of a prime p, let F = GF (q), and let Bq be the bipartite graph of

order 2q2 with vertex set V0∪V1 where V0 = {(a, x)0; a, x ∈ F} and V1 = {(b, y)1; b, y ∈ F}
and where the adjacency, that is, the edges set E(Bq) of Bq, is defined by

(a, x)0 ∼ (b, x+ ab)1 (1)

for all a, b, x ∈ F .

The previous description of Bq is also a definition of an incidence graph in the following

2



way. The vertices with subscript 0 are the set P declared as points and the vertices with

subscript 1 forms the set L declared as lines. The incidence structure (P,L) is called a

biaffine plane [7, 13, 14]. We consider the points of an affine plane and all except one

parallel class of its line. A point and a line are said to be incidence if they are adjacent.

The incidence graph of a biaffine plane is clearly a bipartite graph with even girth at least

6. Alternatively, a biaffine plane can be described as what is left after removing from a

projective plane all the lines through a given point and all points on one such line (the line

at infinity).

In what follows we will consider the analytic description of Bq.

Our goal is to find a method how to extend Bq by just adding new edges within the set

V0 and within V1 to obtain a vertex-transitive graph of diameter 2. For any a, b ∈ F we let

M0(a) = {(a, x)0; x ∈ F} and M1(b) = {(b, y)1; y ∈ F}. We will add edges only within

individual sets of the form M0(a) for a ∈ F , and within M1(b) for b ∈ F . We will say that

a graph Γ is a clustered extension of Bq if Γ contains Bq as a spanning subgraph and the

vertex set of each connected component of Γ\E(Bq) is a subset of M0(a) and M1(b) for

a, b ∈ F . Our aim is the following:

Find all vertex-transitive clustered extensions Γ of Bq of diameter 2.

We show that the solution of the problem can be pinned down to finding certain very

specific elements, subsets, and automorphisms of the field F .

Theorem 1 Let q = pn be a prime power such that q > 5. The following condition (∗) is

sufficient for the existence of a vertex-transitive clustered extensions Γ of Bq of such that

Γ has diameter 2 and degree q + δ with (q − 1)/2 ≤ δ ≤ q − 1:

(∗) There exists a non-zero element t ∈ F , a subset C ⊂ F\{0}, and an automorphism

σ of F , such that |C| = δ, C = −C, C ∪ tCσ = F\{0}, and ttσCσ2
= C.

Moreover, if (n, p) = 1, then the condition (∗) is also necessary for the existence of a

vertex-transitive clustered extension with the above properties.

This result extends the results of [7] devoted to the McKay-Miller-Širáň graphs and gen-

eralizes some of the results of [12]. It allows for new interesting constructions, but also

places severe restrictions on the ways clustered extensions can be constructed.

We also note, how Γ arises as a regular lift of a dipole. At the end we discuss applications

for the constructions in [2], [7], some results of [12] and discuss existence of other generating

sets satisfying the strong conditions of Theorem 1.
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[9] B. D. McKay, M. Miller and J. Širáň, A note on large graphs of diameter two and

given maximum degree, J. Combin. Theory Ser. B 74 (1998), 110–118.
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Abstract

I will survey recent results on Frobenius graphs as models for interconnection networks.

Keywords: Cayley graph, Circulant graph, Frobenius graph, Gossiping, Minimum gossip
time, Routing, Edge-forwarding index, Broadcasting time, Gaussian network, Eisenstein-
Jacobi network.

Introduction

Searching for ‘good’ graphs to model interconnection networks is an ongoing endeavor in
theoretical computer science and communication [4]. Roughly speaking, Cayley graphs
are favored due to their strong fault-tolerance, high expansion in some cases, and vertex-
symmetry that allows uniform routing at all vertices, among many other desirable proper-
ties. So far many classes of Cayley graphs (and circulant graphs in particular) have been
proposed [4] by considering various invariants that measure performance of a network.
In [9] it is proved that, as far as routing and gossiping are concerned, a large class of
arc-transitive Cayley graphs, called the first kind Frobenius graphs [1, 9], are very attrac-
tive candidates in the following sense: any first kind Frobenius graph achieves minimum
possible edge-forwarding index and gossiping time and possesses several other attractive
routing and gossiping properties. In [2] it is proved further that the so-called second kind
Frobenius graphs also have attractive routing and gossiping properties. I will talk about
these results and two interesting families [6, 7, 8] of first kind Frobenius circulant graphs.

Searching for ‘good’ graphs is also motivated by the need of constructing perfect codes.
In recent years, two families of graphs under the name of Gauss and Eisenstein-Jacobi
are proposed [5] from a coding theoretic point of view. Gaussian networks are defined as
certain Cayley graphs on the quotient rings of the ring of Gaussian integers, and Eisenstein-
Jacobi networks are defined in terms of the quotient rings of the ring of Eisenstein-Jacobi
integers. Among other things these two families of graphs have been found useful in
constructing perfect codes [3, 5]. I will discuss recent results pertaining to these two
families of graphs and connections between them and the above-mentioned Frobenius
circulant graphs.
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