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Introduction

The definitions given here are inspired by work of Jacques 
Tits between 1954 and 1962 devoted to incidence 
geometries, to buildings and to their relationships with  
groups, but these notions and relationships are not 
supposed to be known and are not necessary for the 
understanding of what follows.
The presentation seeks to remain as elementary as 
possible.
The motivations are to be found in various "polyhedral talks" 
performed by Edmond Dony and myself.
In my opinion, it is not presently possible to give a  simpler 
definition of polygons and polyhedra without being exposed 
to fundamental errors.
It is obvious that this presentation is not adapted to the 
education of young pupils.
The historical evolution of definitions due to Euclid, 
Legendre and others is a captivating complement which I 
will treat in another text.
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Definition of a polygon

This definition relies on three primitive ( or primary) notions  
which are those of vertex, edge and incidence relation  
These notions are submitted to conditions or axioms.

(P) A polygon is constituted by the data of two non empty 
disjoint sets V and A and of a relationship I which is a 
subset of the product V x A.
The elements of V are called vertices.
The elements of A are calles edges.
I is said to be the incidence relation and its elements are 
called chambers. 
If (s,a) is an element of I, one says that "s is incident to a", 
that "a is incident to s and that " s and a are incident".
These data are submitted to the following conditions :

   (A1)  Every vertex is incident to two edges
   (A2)  Every edge is incident to two vertices
  (A3)  Connectedness: for every vertex s and every edge a, 
there exists a finite sequence   
                                          s = x1, x2, ..., xn = a

in which every pair of consecutive elements are incident.

Comments

1. The names "vertex" and "edge" are not so important.  We 
need them in the expression of the above statements.  We 
could replace them by "chair" and " table" without modifying 
the structure of a polygon.  In other terms, we are not 
interested in the nature of vertices and edges.
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2. If one weakens (A1) and (A2) in requiring that all vertices 
and all edges be incident to at most two elements, one 
opens the door to pre-polygons that include the polygons 
and the "polygonal paths" of  elementary geometry.

3. Vertices and edges play the same role.  There is a 
principle of duality.  Every polygon (V, A, I) possesses a 
dual (A, V, I*) in which (a,s) is an element of I* if and only if 
(s, a) is an element of I.

Definition

Let (V, A, I) and (V', A', I') be two polygons.  An 
isomorphism of the first on the second is a pair of 
bijections of V on V' and of A on A' which transforms every 
chamber of I into a chamber of I'.  The converse property, 
i.e. that every chamber of I' is the image of a chamber of I, 
is automatic.  As usual, an isomorphism of (V, A, I) on itself 
is called an automorphism. 

Theorems

1. For every  natural number n≥2 and for n countably 
infinite, there exists a polygon having n vertices.

2. Two polygons are isomorphic if and only if they have the 
same number of vertices.

3. If (V, A, I) is a polygon in which (s, a) and (s', a') are two 
chambers, there exists one and only one automorphism of 
(V, A, I) transforming (s, a) in (s', a').  Every polygon is 
regular.
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4. The group of automorphisms of a polygon of n vertices is 
the dihedral group of order 2n.

Comments

1. The proofs are neither trivial, nor very difficult.  We deal 
with them during the oral presentation.

2. We observe the appearance of two rather non-classical 
polygons.  On the one side, the digon or polygon with two 
vertices, which we can however watch on every edge of 
every polyhedron. On the other side, the infinite polygon 
which is nothing else than the straight line on the integer 
numbers.

Embedded polygon

Let E be the (Euclidean) plane, the (Euclidean) space or 
any other space in which the following definition has a 
meaning. A polygon (V, A, I) is said to be embedded in E or 
it is a polygon of E if V is a set of points of E and if A is a 
set of closed segments of E such that every endpoint of an 
edge is a vertex.  The polygon is said to be regular if each 
of its automorphisms extends to an automorphism of E.

Definition of a polyhedron

This definition relies on four primitive (or primary) notions 
which are those of vertex, edge, face and incidence relation.  
These notions are submitted to conditions or axioms.
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(P) A polyhedron is constituted by the data of three non- 
empty disjoint sets V, A and F and of a relationship I which 
is a subset of the product V x A x F.
The elements of V are called vertices.
The elements of A are called edges.
The elements of F are called faces.
I is said to be the incidence relation and its elements are 
called chambers.
If x and y are two elements (vertices, edges or faces) of 
some  chamber, x and y are said to be incident. 
If (s,a) is an element of I, one says that "s is incident to a", 
that " a is incident to s” and that " s and a are incident".
A wall is any pair of incident elements.
These data are submitted to the following conditions :

   (A1)  For every vertex s, the set of edges and faces 
incident to s provided with the incidence relation induced by 
I is a polygon.
   (A2)  For every face f, the set of edges and vertices 
incident to f provided with the incidence relation induced by I 
is a polygon.
   (A3)  For every edge a, the set of vertices and faces 
incident to a provided with  the incidence relation induced by 
I is a polygon.
   (A4)  Connectedness: for every vertex s and every face f, 
there exists a finite sequence 
                                          s = x1, x2, ..., xn = f

           in which every pair of consecutive elements are 
incident.

Comments
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1. The names "vertex", "edge" and "face" are not very 
important.  We need them in the expression of the above 
statements.  We could replace them by "chair", "table" and 
"mug" without affecting the structure of a polyhedron.  In 
other terms, we are not interested in the nature of vertices, 
edges and faces.

2. If one loosens (A1) and (A2) in requiring that all vertices 
and all faces be incident to a pre-polygon and one proceeds  
similarly in (A3), one opens the door to pre-polyhedra that 
include the nets of polyhedra of  elementary geometry.

3. Vertices and faces play the same role.  There is a 
principle of duality. Every polyhedron (V, A, F, I) admits a 
dual (F, A, V, I).

4. It is interesting to modify (A3) and replace the word digon 
in it by the word polygon.  One then obtains a triality 
principle.  The structured sets defined in this way are called 
" thin geometries of rank three". 

Definitions

Let (V, A, F, I) and (V', A', F', I') be two polyhedra.  An 
isomorphism of the first onto the second is a trio of one to 
one mappings of V on V', of A to A' and of F to F' which map 
every chamber of I onto a chamber of I'.  The converse 
property, i.e. that every chamber of I' is the image of a 
chamber of I, is automatic.  As usual, an isomorphism of (V, 
A, F, I) onto itself is called an automorphism. 

A polyhedron is said to be regular if for every chamber c 
and every chamber c' there exists an automorphism 
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mapping c onto c'.

Theorems

1. Every wall is contained in two chambers.

2.  If one decides that two chambers are adjacent if they 
have a common wall, the set of chambers is connected 
under the adjacency relation.

3.  If c and c' are two chambers, there exists at most one 
automorphism mapping c onto c'.

4. In a regular polyhedron, every wall is invariant under one 
and only non-identity  automorphism and the latter is of 
order two. 

Comments

1. The proofs are neither trivial, nor very difficult.  We keep 
them for the oral presentation.

2. One must not expect an exhaustive classification of the 
polyhedra as was the case for polygons.  The world of 
polyhedra is wild. One must not even expect an exhaustive 
classification of the regular polyhedra : that world is wild too.  
It is possible to define covers of polyhedra and to classify 
the regular simply connected polyhedra.

3.  One could express "convexity" using Euler’s formula as 
an axiom. In the usual practice, this is what is almost always 
done in an implicit way.
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Embedded polyhedron

Let E be the (Euclidean) plane, the (Euclidean) space or 
any other space in which the following definition has a 
meaning. A polyhedron (V, A, F, I) is called embedded in E 
or it is a polyhedron of E if V is a set of points of E and if A 
is a set of closed segments of E such that every end  of an 
edge is a vertex. An element of F is a polygon embedded in  
E all of whose vertices are in V and whose edges are in A. 
The polyhedron is said to be regular in E if it is regular and 
if each of its automorphisms extends to an automorphism of 
E.

Comments

1. It is possible to develop a theory of nets of polyhedra 
resulting in a beautiful general theorem.

2. It is possible to avoid the repetitions we have made 
separating the polygons and the polyhedra.  There is a 
unified and generalized definition of the polytopes and of the 
thin geometries. As to Group Theory this matter is close to 
the Coxeter groups.

3. We just saw that a theory of polyhedra via incidence 
geometry and without topology is well developed.  The 
present exception is the treatment of the generalized Euler 
formula which remains dependant on topology, perhaps 
temporarily.

4. It may happen that a polyhedron of E be regular as a 
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polyhedron but that it is not regular in E.  Let's think of a 
rectangular parallelipiped.  There are other more 
spectacular counter-examples.
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